Publications

  1. Prethermalization in the PXP Model under Continuous Quasiperiodic Driving; P Dutta, S Choudhury, V Shukla. Physical Review B 111 (6), 064303,  2025.  arXiv:2406.01440 
  2. Nonequilibrium Continuous Transition in a Fast Rotating Turbulence; C S Lohani, S K Nayak, K Seshasayanan, V Shukla. 2025. arXiv:2501.07079
  3. Lyapunov spectra and fluctuation relations: Insights from the Galerkin-truncated Burgers equation; A Das, P Dutta, KL Panigrahi, V Shukla. 2024. arXiv:2408.17310
  4. Poles, Shocks and Tygers: The Time-reversible Burgers Equation; A Das, P Dutta, V Shukla. Physical Review E 109 (6), 065108, 2024. arXiv:2310.12624
  5. Statistical properties of superfluid turbulence in from the Hall-Vinen-Bekharevich-Khalatnikov model; AK Verma, S Shukla, V Shukla, A Basu, R Pandit. Physical Review E 108 (4), 045103, 2023.
  6. Equivalence of nonequilibrium ensembles: Two-dimensional turbulence with a dual cascade; M. Maji et al. Physical Review E 108 (1), 015102, 2023. arXiv:2112.12215
  7. Inertial particles in superfluid turbulence: Coflow and counterflow; S. Shukla et al. Physics of Fluids 35 (1), 2023.
  8. Machine learning of Ising criticality with spin-shuffling; P Basu et al. arXiv:2203.04012.
  9. Non-equilibrium Bose-Einstein Condensation; V. Shukla and S. Nazarenko; Physical Review A 105 (3), 033305, 2022. arXiv:2105.07274.
  10. Magnus-force model for active particles trapped on superfluid vortices; A. Griffin, V. Shukla, M-E. Brachet, S. Nazarenko: Phys. Rev. A 101, 053601, 2020. arXiv:1909.11010.
  11. Phase transition in time-reversible Navier-Stokes equations; V. Shukla, B. Dubrulle, S. Nazarenko, G. Krstulovic, and S. Thalabard; arXiv:1811.11503. Physical Review E 100 (4), 043104, 2019.
  12. About Universality and Thermodynamics of Turbulence; D. Geneste, H. Faller, F. Nguyen, V. Shukla, J-P Laval, F. Daviaud, E-W Saw,  and B. Dubrulle; Entropy 21(3), 326,  2019.
  13. Quantitative estimation of effective viscosity in quantum turbulence; V. Shukla, P.D. Mininni, G. Krstulovic, P. Clark di Leoni, and M. Brachet; Phys. Rev. A 99, 043605, 2019.
  14. Dissipation, intermittency, and singularities in incompressible turbulent flows; P. Debue, V. Shukla, D. Kuzzay, D. Faranda, E.-W. Saw, F. Daviaud, and B. Dubrulle; Phys. Rev. E., 97 (5), 053101, 2018.
  15. Particles and fields in superfluids: Insights from the two-dimensional Gross-Pitaevskii equation; V. Shukla, R. Pandit, M. Brachet; Phys. Rev. A 97, 013627, 2018. Also at arXiv:1710.10107
  16. Phoresis in turbulent flows; V. Shukla, R. Volk, M. Bourgoin, and A. Pumir; New J. Phys., 19, 123030, 2017.
  17. An overview of the statistical properties of two-dimensional turbulence in fluids with particles, conducting fluids, fluids with polymer additives, binary-fluid mixtures, and superfluids, R. Pandit, et al; Physics of Fluids 29, 111112 (2017); https://doi.org/10.1063/1.4986802
  18. Statistical theory of reversals in two-dimensional confined turbulent flows; V Shukla, S Fauve, and M Brachet; Physical Review E 94 (6), 061101, 2016.
  19. Sticking transition in a minimal model for the collisions of active particles in quantum fluids; V. Shukla, M. Brachet  and R. Pandit; Phys. Rev. A 94 (4), 041602(R), 2016.
  20. Multiscaling in superfluid turbulence: A shell-model study; V. Shukla and R. Pandit; Phys. Rev. E 94 (4), 043101, 2016.
  21. Homogeneous isotropic superfluid turbulence in two dimensions: Inverse and forward cascades in the Hall-Vinen-Bekharevich-Khalatnikov model; V. Shukla, A. Gupta, and R. Pandit; Physical Review B 92 (10), 104510, 2015.
  22. Superfluid Mutual-friction Coefficients from Vortex Dynamics in the Two-dimensional Galerkin-truncated Gross-Pitaevskii Equation; V. Shukla, M. Brachet and R. Pandit; arXiv preprint arXiv:1412.0706, 2014.
  23. Turbulence in the two-dimensional Fourier-truncated Gross–Pitaevskii equation; V. Shukla, M. Brachet and R. Pandit; New J. Phys. 15(11), 113025, 2013.