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Preface

In this thesis we study a variety of problems in superfluid turbulence, princi-

pally in two dimensions. A summary of the main results of our studies is given

below; we indicate the Chapters in which we present these.

In Chapter 1, we provide an overview of several problems in superfluid turbu-

lence with special emphasis on background material for the problems we study in

this thesis. In particular, we give: (a) a brief introduction of fluid turbulence; (b)

an overview of superfluidity and the phenomenological two-fluid model; (c) a brief

overview of experiments on superfluid turbuelnce; (d) an introductory accounts of

the phenomenological models used in the study of superfluid turbuelnce. We end

with a summary of the problems we study in subsequent Chapters of this thesis.

In Chapter 2, we present a systematic, direct numerical simulation of the two-

dimensional, Fourier-truncated, Gross-Pitaevskii equation to study the turbulent

evolutions of its solutions for a variety of initial conditions and a wide range of pa-

rameters. We find that the time evolution of this system can be classified into four

regimes with qualitatively different statistical properties. First, there are tran-

sients that depend on the initial conditions. In the second regime, power- law scal-

ing regions, in the energy and the occupation-number spectra, appear and start

to develop; the exponents of these power laws and the extents of the scaling re-

gions change with time and depend on the initial condition. In the third regime,

the spectra drop rapidly for modes with wave numbers k > kc and partial ther-

malization takes place for modes with k < kc ; the self-truncation wave number

kc(t) depends on the initial conditions and it grows either as a power of t or as

log t. Finally, in the fourth regime, complete thermalization is achieved and, if we

account for finite-size effects carefully, correlation functions and spectra are con-

sistent with their nontrivial Berezinskii-Kosterlitz-Thouless forms. Our work is a

natural generalization of recent studies of thermalization in the Euler and other

hydrodynamical equations; it combines ideas from fluid dynamics and turbulence,

on the one hand, and equilibrium and nonequilibrium statistical mechanics on the

other.

In Chapter 3, we present the first calculation of the mutual-friction coefficients

α and α′ (which are parameters in the Hall-Vinen-Bekharevich-Khalatnikov two-

fluid model that we study in chapter 5) as a function of temperature in a ho-

mogeneous Bose gas in two-dimensions by using the Galerkin-truncated Gross-

Pitaevskii equation, with very special initial conditions, which we obtain by using

vi



Preface vii

the advective, real, Ginzburg-Landau equation (ARGLE) and an equilibration pro-

cedure that uses a stochastic Ginzburg-Landau equation (SGLE). We also calculate

the normal-fluid density as a function of temperature.

In Chapter 4, we elucidate the interplay of particles and fields in superfluids, in

both simple and turbulent flows. We carry out extensive direct numerical simula-

tions (DNSs) of this interplay for the two-dimensional (2D) Gross-Pitaevskii (GP)

equation. We obtain the following results: (1) the motion of a particle can be chaotic

even if the superfluid shows no sign of turbulence; (2) vortex motion depends sen-

sitively on particle charateristics; (3) there is an effective, superfluid-mediated,

attractive interaction between particles; (4) we introduce a short-range repulsion

between particles, with range rSR, and study two- and many-particle collisions; in

the case of two-particle, head-on collisions, we find that, at low values of rSR, the

particle collisions are inelastic with coefficient of restitution e = 0; and, as we in-

crease rSR, e becomes nonzero at a critical point, and finally attains values close

to 1; (5) assemblies of particles and vortices show rich, turbulent, spatio-temporal

evolution.

In Chapter 5, we present results from our direct numerical simulations (DNSs)

of the Hall-Vinen-Bekharevich-Khalatnikov (HVBK) two-fluid model in two dimen-

sions. We have designed these DNSs to study the statistical properties of inverse

and forward cascades in the HVBK model. We obtain several interesting results

that have not been anticipated hitherto: (1) Both normal-fluid and superfluid en-

ergy spectra, En(k) and Es(k), respectively, show inverse- and forward-cascade

regimes; the former is characterized by a power law Es(k) ∼ En(k) ∼ k−α whose

exponent is consistent with α ≃ 5/3. (2) The forward-cascade power law depends

on (a) the friction coefficient, as in 2D fluid turbulence, and, in addition, on (b)

the coefficient B of mutual friction, which couples normal and superfluid compo-

nents. (3) As B increases, the normal and superfluid velocities, un and us, re-

spectively, get locked to each other, and, therefore, Es(k) ≃ En(k), especially in

the inverse-cascade regime. (4) We quantify this locking tendency by calculating

the probability distribution functions (PDFs) P(cos(θ)) and P(γ), where the angle

θ ≡ (un · us)/(|un||us|) and the amplitude ratio γ = |un|/|us|; the former has a peak

at cos(θ) = 1; and the latter exhibits a peak at γ = 1 and power-law tails on both

sides of this peak. (4) This locking increases as we increase B, but the power-law

exponents for the tails of P(γ) are universal, in so far as they do not depend on

B, ρn/ρ, and the details of the energy-injection method. (5) We characterize the

energy and enstrophy cascades by computing the energy and enstrophy fluxes and

the mutual-friction transfer functions for all wave-number scales k.
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In Chapter 6, we examine the multiscaling of structure functions in three-dimensional

superfluid turbulence by using a shell-model for the three-dimensional HVBK equa-

tions. Our HVBK shell model is based on the GOY shell model. In particular,

we examine the dependence of multiscaling on the normal-fluid fraction and the

mutual-friction coefficients.

We hope our in silico studies of 2D and 3D superfluid turbulence will stimulate

new experimental, numerical, and theoretical studies.
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Chapter 1

Introduction

1.1 Turbulence

Turbulence is a common phenomena in fluid flows. Turbulence occurs in atmo-

spheric flows, ocean currents, Earth’s molten core, the solar atmosphere, convective

zones in stars, interstellar clouds, arms of spiral galaxies. Cyclones (Fig. 1.1 (a)),

ash plumes from volcano eruptions (Fig. 1.1 (b)), jet streams, rapids in rivers, and

winds past high land-masses (Fig. 1.1 (c)) are all examples of naturally occurring

turbulent flows on Earth. The Great Red Spot of Jupiter (Fig. 1.2 (a)) and solar

flares (Fig. 1.2 (b)) are two examples of extraterrestrial turbulent motion. Turbu-

lence can also be created in superfluid flows and is believed to be present in the

superfluid cores of neutron stars (Fig. 1.2 (c)) [1,2].

The above examples and pictures Figs. 1.1 (a)-(c) and 1.2 (a)-(c) show manifes-

tations of turbulence in vastly different systems, so it becomes difficult to give a

precise definition of turbulence. Therefore, we adopt a working definition from

a recent review on Quantum Turbulence [3], “Despite the abundant examples of

turbulence, there is no consensus definition of the term. Here, we define turbu-

lence as a dynamic field that is spatially complex, aperiodic in time, and involves

processes spanning several orders of magnitude in spatial extent and temporal

frequency.” In this thesis we present our results from studies of various statisti-

cal properties of superfluid turbulence in two-(2D) and three-dimensions (3D). In

Chapter 2, we present a systematic, direct numerical simulation (DNS) of the 2D,

Fourier-truncated, Gross-Pitaevskii equation to study the turbulent evolutions of

its solutions for a variety of initial conditions. Chapter 3 contains our calculations

of the mutual-friction coefficients as a function of temperature in a homogeneous

Bose gas in 2D by using the Galerkin-truncated Gross-Pitaevskii equation. Chap-

ter 4 is devoted to the study of the interplay of particles and fields in superfluids, in

both simple and turbulent flows. Chapter 5 contains results from our DNSs of the

1



1.1. Turbulence 2

(a) (b) (c)

Figure 1.1: (a) Cyclone Phailin (near peak intensity on October 11, 2013), a severe, tropical cyclone over

the Bay of Bengal. Source:http://en.wikipedia.org/wiki/Cyclone_Phailin. (b) A view of Sarychev

Volcano (Kuril Islands, northeast of Japan), in an early stage of eruption on June 12, 2009; turbulent

plume was a combination of brown ash and white steam (photograph by the Expedition 20 crew on the

International Space Station). Source:http://earthobservatory.nasa.gov/IOTD/view.php?id=38985.

(c) von Kármán vortex street, formed by wind-driven clouds when they encountered Selkirk Is-

land in the southern Pacific Ocean (Image acquired by Landsat 7 on September 15, 1999).

Source:http://earthobservatory.nasa.gov/IOTD/view.php?id=625.

(a) (b) (c)

Figure 1.2: (a) The Great Red Spot (in the south-eastern corner), a giant swirling storm sys-

tem in the Jupiter’s banded atmosphere, which has existed for more than 300 years; the spot

rotates anticlockwise, with a period of six Earth days. Image taken on April 21, 2014 by

NASA’s Hubble Space Telescope (Credit: NASA, ESA, and A. Simon (Goddard Space Flight Cen-

ter)). Source:http://hubblesite.org/newscenter/archive/releases/2014/24/image/b. (b) The

bright light of a solar flare on the left side of the sun and an eruption of solar material shoot-

ing through the sun’s atmosphere; this is called a prominence eruption. Shortly thereafter, this

same region of the sun sent a coronal mass ejection out into space. The image was taken on

June 20, 2013, at 11:15 p.m. EDT; credit: Solar Dynamics Observatory (SDO), NASA. Source:

http://www.nasa.gov/mission_pages/sunearth/news/News062013-cme.html. (c) This composite

image shows a beautiful X-ray and optical view of Cassiopeia A (Cas A), a supernova remnant located in

our Galaxy about 11,000 light years away. These are the remains of a massive star that exploded about

330 years ago, as measured in Earth’s time frame. X-rays from Chandra (NASA’s Chandra X-ray Obser-

vatory) are shown in red, green, and blue, along with optical data from the Hubble-Space Telescope in

gold. At the center of the image is a neutron star, an ultra-dense star created by the supernova. This

was the first direct evidence for a superfluid, a friction-free state of matter, at the core of a neutron star.

Source:http://chandra.harvard.edu/photo/2011/casa/.

http://en.wikipedia.org/wiki/Cyclone_Phailin
http://earthobservatory.nasa.gov/IOTD/view.php?id=38985
http://earthobservatory.nasa.gov/IOTD/view.php?id=625
http://hubblesite.org/newscenter/archive/releases/2014/24/image/b
http://www.nasa.gov/mission_pages/sunearth/news/News062013-cme.html
http://chandra.harvard.edu/photo/2011/casa/


1.2. Fluid turbulence 3

Hall-Vinen-Bekharevich-Khalatnikov (HVBK) two-fluid model in 2D. In Chapter 6,

we examine the multiscaling of structure functions in 3D superfluid turbulence by

using a shell model for the 3D HVBK equations.

The remaining part of this Chapter is organized as follows. In Sec. 1.2 we

present an introduction to three- and two-dimensional fluid turbulence. In Sec. 1.3

we give an overview of superfluidity and the phenomenological two-fluid model.

Section 1.4 is devoted to superfluid turbulence; here we give a brief introduction,

followed by an overview of important experiments and phenomenological models.

1.2 Fluid turbulence

The spatiotemporal evolution of the velocity field u(x, t) associated with an incom-

pressible and charge-neutral fluid flow is governed by the Navier-Stokes (NS) equa-

tions

∂u(x, t)

∂t
+ u(x, t) · ∇u(x, t) = −1

ρ
∇p+ ν∇2u(x, t) + fext, (1.1a)

∇ · u(x, t) = 0; (1.1b)

where ρ is the fluid density, ν the kinematic viscosity, and fext represents the forces

driving the fluid flow. The Eqs. (1.1a) and (1.1b) result from the momentum and

the density conservation laws, respectively. The NS Eqs. (1.1) are an example of a

nonlinear, partial differential equations with a quadratic nonlinearity in the vari-

able u(x, t). The nonlinearity in the Eq. (1.1) manifests itself in the form of a wide

variety of complex phenomena in its solutions, with turbulence being one of them,

where the velocity field u(x, t) fluctuates randomly in time and varies across a wide

range of length scales. The Eq. (1.1) themselves are deterministic, i.e., it is possible

to integrate them for given initial conditions, but its solutions are unpredictable in

the sense that an infinitesimal variation in the initial state may lead to a com-

pletely different realization. Strictly speaking, the regularity of the solutions of

the Navier-Stokes equation, for arbitrary initial data, has not been established;

and this continues to be a grand challenge for mathematicians [4]. Thus, turbu-

lence is a dynamic phenomenon, in which fields, such as the velocity of a fluid,

display spatiotemporal chaos. Therefore, while characterizing the turbulent flows,

we are interested not in one realization of the fields associated with the flow, but

the statistical properties of the fields, which are well behaved and reproducible.



1.2. Fluid turbulence 4

Reynolds number

To understand the onset of turbulence in the fluid flows, we make use of a nondi-

mensional parameter, referred to as the Reynolds number Re ≡ UL/ν, where U

and L are the characteristic velocity and length scales of the flow, respectively. At

low values of Re the fluid flow is laminar; if Re is progressively increased then, at

a critical value of Re = Rec, the flow starts becoming unstable and at Re ≫ Rec it

displays fully developed turbulence. Reynolds number can also be viewed as the

ratio of the nonlinear, advective term u · ∇u and the dissipation term ν∇2u.

Velocity-vorticity formulation

We can obtain an equation for the dynamical evolution of the vorticity field ω =

∇× u, by taking the curl of the NS Eqs. (1.1), given by

∂tω + (u · ∇)ω = (ω · ∇)u+ ν∇2ω + fω; (1.2a)

∇2u = −∇× ω; (1.2b)

here fω is the forcing term for the vorticity field. In three-dimensional (3D) turbu-

lent flows, the “vortex stretching term” (ω · ∇)u can either amplify or reduce the

vorticity locally. The global measure of the vorticity content of the flow, the mean-

squared vorticity, referred to as the enstrophy, can also get amplified or reduced by

this mechanism, but it does not affect the integrated vorticity.

Two-dimensional NS equation and vorticity-stream function formulation

All fluid flows whether, naturally occurring or produced in laboratories are three-

dimensional; even then, an idealized two-dimensional (2D) flow is relevant in the

following cases: (a) the spatial extent of the fluid flow is much smaller in one direc-

tion than in the other two and the typical sizes of the features of interest, in such

flows; (b) there may be other constraints, which render the fluid motion a quasi

two-dimensional. Two-dimensional flows are described by the NS Eqs. (1.1), but

now the velocity field u(r, t) is constrained to two-dimensions with r ≡ (x, y):

∂tu+ (u · ∇)u = −1

ρ
∇p+ ν∇2u− µu+ f , (1.3a)

∇ · u = 0; (1.3b)

here µ is the linear-friction force coefficient. The linear-friction term is included

to model the boundaries of the quasi-2D flows with the surrounding medium or

air-drag induced friction in a fluid soap film [5–7].
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The curl of Eq. (1.3) gives the following equation

∂tω + u · ∇ω = ν∇2ω − µω + fω, (1.4a)

∇2ψ = −ω, (1.4b)

u =
(
∂yψ,−∂xψ

)
; (1.4c)

here ψ is the stream-function. Furthermore, by using Eq. (1.4c) we can rewrite the

2D NS Eq. (1.4) in the vorticity-stream-function formulation as

∂tω + (∂xω∂yψ − ∂yω∂xψ) = ν∇2ω − µω + fω, (1.5a)

ω = −∇2ψ, (1.5b)

where the incompressibility condition Eq. (1.3b) is satisfied by construction.

1.2.1 Conservation laws

In the discussion below, we use periodic boundary conditions for the solutions of

the NS Eqs. (1.1) describing an incompressible fluid flow, so that u(x, t) is spatially

periodic, with period L. First, we define the important quantities (per unit mass)

characterizing the flow, which we use extensively later in the thesis: E ≡ 〈1
2
|u|2〉

is the mean energy, Ω ≡ 〈1
2
|ω|2〉 is the mean enstrophy, H ≡ 〈1

2
u · ω〉 is the mean

helicity, and Hω ≡ 〈1
2
ω · ∇ × ω〉 is the mean vortical helicity, where the angular

brackets denote spatial average over the entire volume occupied by the fluid 〈·〉 ≡
(1/L3)

∫
L3 dx.

The quantities defined above satisfy the following balance equations:

dE

dt
= −2νΩ; (1.6a)

dH

dt
= −2νHω; (1.6b)

these become conservation laws only when the viscosity is set equal to zero. In the

presence of an external forcing, the energy balance Eq. (1.6a) is modified to

dE

dt
= −ǫν + ǫinj, (1.7)

where ǫν ≡ 2νΩ is the mean energy dissipation and ǫinj ≡ 1
L3

∫
L3 fext · u the energy-

injection rate. In a statistically-steady state 〈dE/dt〉 = 0 and ǫν = ǫinj.

In two-dimensional systems the helicity vanishes identically and we have a con-

servation law for the enstrophy (if ν = 0)

dΩ

dt
= −2νP, (1.8)

where P = 〈1
2
|∇ × ω|2〉 is the palinstrophy.
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1.2.2 Classical turbulence phenomenology

As mentioned earlier, we are interested in the statistical description of the tur-

bulent flows; to further simplify our problem, we assume that the flows which we

consider are statistically homogeneous and isotropic; thus, the turbulence is statis-

tically invariant under translation, rotation and reflection of coordinate axes. We

begin with the pictorial description of turbulence, based on the concept of energy

cascade introduced by L. F. Richardson, who wrote, “Big whorls have have little

whorls that feed on their velocity, and little whorls have lesser whorls and so on

to viscosity” [8]. Thus, we can identify the Richardson-cascade picture with three

different regions of spatial scales (ℓ): (1) the energy-injection scales (ℓ ∼ lI), where

the energy driving the turbulent flow is injected into the system at large length

scales and the eddies (∼ curl of velocity) formed are comparable to the system size

(lI is also called the integral scale); (2) the region of intermediate length scales

(lI ≫ ℓ ≫ ld), also called the inertial scales, through which the energy flows down

by the transformation of the large-scale eddies into successively small-scale eddies

by nonlinear interactions, represented by the advection term in the NS Eqs. (1.1);

(3) dissipation scales ℓ≪ ld, where ld is the dissipation-scale below which the finer

eddies are removed from the system by viscous dissipation.

Now, we give a more systematic, phenomenological description of turbulence in

terms of statistical quantities; we follow Ref. [9] closely and at places we quote ver-

batim from it. The following two basic empirical laws of fully developed turbulence,

seem to be valid, at least approximately for any turbulent flow:

• Two-thirds law. In a turbulent flow at very high Reynolds number, the mean

square velocity increment 〈(δu(l))2〉 between two-points separated by a dis-

tance ℓ behaves approximately as the two-thirds power of the distance in the

inertial range.

• Law of finite energy dissipation. If, in an experiment on turbulent flow, all the

control parameters are kept the same, except for the viscosity, which is lowered

as much as possible, the energy dissipation per unit mass dE/dt behaves in a

way consistent with a finite positive limit.

We now state hypotheses, originally due to Kolmogorov [10,11], compatible with

the above two laws, to make more predictions about the turbulent flows.

• H1 As Re → ∞, all the possible symmetries of the Navier-Stokes equation,

usually broken by the mechanisms producing the turbulent flow, are restored

in a statistical sense at small scales (ℓ≪ lI) and away from boundaries.
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• H2 With the same assumptions of H1, the turbulent flow is self-similar at

small scales, i.e. it possesses a unique scaling exponent.

• H3 With the same assumptions of H1, the turbulence has a finite, nonvanish-

ing mean rate of dissipation ǫ per unit mass.

The velocity increments over length ℓ are

δu(r, ℓ) ≡ u(r+ ℓ)− u(r). (1.9)

We define the property of small-scale homogeneity by assuming that δu(r+̺, ℓ)
Law
=

δu(r, ℓ), for all increments ℓ≪ lI and all displacements ̺≪ lI , where the symbol
Law
=

implies same statistical properties. Similarly, we regard isotropy as the invariance

of the statistical properties of δu(r, ℓ) under simultaneous rotations of ℓ and δu.

The self-similarity (H2) is δu(r, λℓ)
Law
= λhδu(r, ℓ) ∀ λ ∈ R+ and h ∈ R, for all r and

all increments ℓ ≪ lI and λℓ ≪ lI .

Kolmogrov’s four-fifths law, one of the most important and the only exact

result in the theory of fully developed turbulence [12], states that, as Re→ ∞
the third order (longitudinal) structure function of homogeneous isotropic tur-

bulence, evaluated for increments ℓ small compared to the integral scale, is

〈
(
δu‖(ℓ)

)3〉 = −4

5
ǫℓ. (1.10)

The order-p longitudinal structure functions of the velocity fluctuations δu(ℓ) are

Sp(ℓ) ≡
〈[(

u(r+ ℓ)− u(r)
)
· ℓ
ℓ

]p〉
=
〈[
δu(ℓ) · ℓ

ℓ

]p〉
, (1.11)

where the order p > 0 and the increment ℓ ≪ lI . The three hypotheses H1, H2,

H3 and the four-fifths law, together can be used to show that the unique scaling

exponent (H2) is h = 1/3, which implies that the structure functions Sp behave as

Sp(ℓ) ∝ ℓζp (1.12)

with ζp = p/3 and ℓ in the inertial range. Because (ǫℓ)p/3 has the same dimensions

as Sp, we rewrite the above equation as

Sp(ℓ) = Cpǫ
p/3ℓζp , (1.13)

where Cp’s are dimensionless. These predictions were made by Kolmogorov in the

year 1941, therefore, we refer to this phenomenological approach as K41.

The second-order structure function S2(ℓ) can be related to the energy spectrum

E(k) defined in the Fourier space, which shows the distribution of energy across

the length scales:

E(k) ≡
∫

Ωs

dΩs|u(k)|2; (1.14)
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here u(k) is the Fourier-space representation of the velocity field u, k = |k|, k the

wave vector, and Ωs the d-dimensional solid angle. In the K41 description S2 ∼ ℓ2/3,

so

EK41(k) ∼ k−5/3, (1.15)

which is in good agreement with the experimental results.

We briefly give the estimates of some of the length scales, which are frequently

used in this phenomenological description. The integral scale

lI ≃
∑

k k
−1E(k)∑

k E(k)
; (1.16)

the Taylor-microscale

λ ≃
( ∑

k E(k)∑
k k

2E(k)

)1/2
; (1.17)

and the dissipation length scale

ld ≃
(ν3
ǫ

)1/4
. (1.18)

Based on lI and λ we can define the integral-scale Reynolds number ReI = urmslI/ν

and the Taylor-microscale Reynolds number Reλ = urmsλ/ν, respectively, where urms

is the root-mean-square velocity.

Intermittency

The phenomenological picture presented above is incomplete. Experiments and nu-

merical simulations show that the structure-function (multi)scaling exponents ζp

deviate significantly from the ζK41
p . Thus, these are anomalous. This arises because

of small-scale intermittency in turbulent flows, both in temporal and the spatial do-

mains: (a) in the temporal domain intermittency shows up as short bursts in the

time series of an observable, e.g., the velocity component measurement at a point,

separated by relatively quiescent periods; (b) in the spatial domain it is charac-

terized by the occurrence of isolated regions of high-amplitude fluctuations, once

again, separated by relatively quiescent regions. These extreme events become

more pronounced as Re increases. Intermittency is also reflected in the probability

distribution functions (PDFs) of the increments of the fluid velocity δu in the form

of extended, length-scale-dependent tails, whose extent is much more than that of

a Gaussian PDF. This signifies that extreme or rare events are far more probable

than can be expected from a Gaussian distribution; and it results because of the

uneven spatial distribution of the small-scales; therefore, the small-scale univer-

sality assumption in the K41 is not completely true as it assumes that the energy
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transfer across the inertial scales occur only because of the interactions between

the neighboring scales.

The scaling exponents ζp of structure functions must satisfy certain constraints

as discussed in Ref. [9], which we follow closely here. In summary, the structure

functions of even order follow power-laws with exponents ζ2p and, if the incompress-

ibility approximation does not break down as Re → ∞, the graph of ζ2p versus p is

concave and nondecreasing. A precise discussion (see Ref. [9]) of these constraints

proceeds as follows:

• S1 In the limit Re = lIu0/ν → ∞, the structure functions of even order 2p > 0

possess the exponents ζ2p, i.e., for ℓ→ 0,

〈
(
δu‖(ℓ)

)2p〉
u2p0

≈ A2p

( ℓ
lI

)ζ2p , (1.19)

where A2p is a positive numerical constant (not necessarily universal).

• S2 For large but finite Re, the scaling above Eq. (1.19) still holds over the

inertial range of scales increasing with Re at least as a power-law:

1 ≫ ℓ

lI
≫ Re−α, (1.20)

where α > 0.

u0 is root-mean-square velocity fluctuation associated to length scales lI . Below we

state the following constraints on the ζp without their proofs:

• P1 For any three positive integers p1 ≤ p2 ≤ p3, we have the convexity inequal-

ity:

(p3 − p1)ζ2p2 ≥ (p3 − p2)ζ2p1 + (p2 − p1)ζ2p3. (1.21)

• P2 Under assumption S1, if there exist two consecutive even numbers 2p and

2p+ 2 such that

ζ2p > ζ2p+2, (1.22)

then the velocity of the flow (measured in the reference frame of the mean

flow) cannot be bounded.

Energy cascades in 2D turbulence

The conservation of energy and enstrophy, in the inviscid unforced case in the 2D

Navier-Stokes equation, gives the 2D fluid turbulence one of its most characteris-

tic feature namely, two cascades (as opposed to the forward cascade of energy, from
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large to small length scales, in 3D fluid turbulence). In 1967, Kraichnan had sug-

gested that, if energy is injected into a 2D flow at an intermediate length scale l0,

at a constant rate ǫ, then kinetic energy flows towards larger length scales ℓ > l0,

until the largest scale is reached [13]. This inverse cascade of energy was con-

jectured by Kraichnan based on ‘absolute equilibrium’ for the Galerkin-truncated

Euler equation, in the absence of any forcing and viscous dissipation; the Galerkin

truncation makes the Euler equation a finite-dimensional Hamiltonian system be-

cause, only a finite number of Fourier-modes are retained [14]. The inverse-cascade

regime is associated with an energy spectrum E(k) ∼ k−5/3, for the wave-number

range kE < k < l−1
0 , where the peak E(kE) depends on the balance between the

nonlinear energy transfer and the energy sink at the largest scales; thus, the en-

ergy spectrum at very low wave numbers depends on the presence (and the nature)

or the absence of an energy sink [15, 16]. For example, in many experimental re-

alizations like soap films, the inverse cascade is cut off at large length scales by

air-drag-induced friction [7,17,18].

The forward-cascade regime, with E(k) ∼ k−3 for the wave number range l−1
0 <

k < l−1
d , is associated with the cascade of enstrophy from the energy-injection

length scale to smaller length scales [13, 19, 20]. In the presence of linear-friction,

at small wave numbers, the energy spectrum E(k) ∼ k−3−δ, where δ > 0 depends

on the coefficient of friction. The enstrophy spectra behaves as Ω(k) ∼ k−1−δ in the

forward-cascade regime [16,21,22].

1.3 Superfluid hydrodynamics

Superfluidity is a phenomenon in which quantum-mechanical behavior is mani-

fested on a macroscopic level. It was first discovered in the year 1937 in helium,

which, when cooled below the critical transition temperature Tλ = 2.17K, becomes

a superfluid. The transition temperature Tλ is called the ‘lambda point’ because of

the characteristic shape of the specific-heat versus temperature curve, which looks

like a Greek letter λ. The phases of liquid helium, above and below Tλ, are also

referred to as helium I and helium II, respectively. At temperatures below Tλ, the

de-Broglie wavelength of the helium atoms is comparable to the interatomic dis-

tances, so it has quantum properties and, thus, it is not a classical, but a quantum

liquid. In helium II, the ability of the superfluid to flow, without friction, through

narrow capillaries is one of the several remarkable properties of the superfluidity.

Many of the flow properties of superfluid helium II at low velocities can be de-

scribed within the framework of a phenomenological, two-fluid model, proposed by
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Figure 1.3: Direct measurement of ρn/ρ as function of temperature. (a) Schematic of the experiment

reported in Ref. [23]: A pile of equally-spaced metal discs, suspendend by a torsion fibre performs

torsion oscillations in liquid helium. For T > Tλ all the fluid between the discs is dragged, however,

at temperatures below Tλ not all the fluid is dragged with discs resulting in the sharp decrease

in the oscillation period. (b) Variation of ρn/ρ and ρs/ρ with temperature. The above schematic

diagrams are based on Fig.1.7 in Ref. [24].

Figure 1.4: Film flow of superfluid fraction of helium II through the film in the presence of height

difference between two bulk liquids. The above schematic diagram is based on Fig.1.8 in Ref. [24].
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A B

Figure 1.5: Temperature difference between two columns of bulk helium II connected by a super-

leak, which clamps the normal fluid flow, is accompanied by a pressure head. The column at higher

temperature has a reduced ρs/ρ fraction, so the superfluid fraction moves to through the superleak

to minimize the temperature gradient. The above schematic diagram is based on Fig.1.9 in Ref. [24].

Radiation

Emery powder

Cotton wool

Figure 1.6: The helium fountain: When the emry powder in the superleak is heated, the superfluid

fraction flows into the superleak with such a large speed that helium II is forced out of the capillary

tube in the form of a jet (for details we refer the reader to Refs. [25, 26]. The above schematic

diagram is based on Fig.1.10 in Ref. [24].
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L. Tisza [27,28] and L. Landau [29], independently. In the two-fluid model, Helium

II is regarded as a physically inseparable mixture of two fluids, one the superfluid

and the other the normal fluid; the former has no viscosity or entropy and can flow

in a dissipationless manner past obstacles and through extremely narrow chan-

nels; the latter has viscosity and carries the entire entropy of the flow. The total

density ρ of helium II is the sum of the superfluid density ρs and the normal fluid

density ρn; ρ, ρs, and ρn depend on the temperature T . At T = Tλ, ρ = ρn; and

at T = 0, the normal fluid density is zero, so ρ = ρs. Both the superfluid and the

normal fluid are assumed to have their own velocity fields vs and vn, respectively.

Thus, the total current density is j = js + jn = ρsvs + ρnvn, where js and jn are the

superfluid and the normal fluid current densities, respectively. In Figs. 1.3, 1.4, 1.5,

and 1.6 we illustrate some of the remarkable properties of superfluids, which were

demonstrated in the early experiments on liquid helium.

Superfluidity is associated with a phenomenon of Bose-Einstein condensation

(BEC) exhibited by bosons at low-enough temperatures, in which a quantum state,

corresponding to the lowest single-particle energy level, has a macroscopic popula-

tion; the particles constituting the macroscopic population are together regarded as

a condensate. In liquid helium there are interactions between atoms and these in-

teractions cause a depletion of the condensate by raising some particles to slightly

higher energy levels. Therefore, the higher energy levels have a finite population

at absolute zero temperature because of depletion and at temperatures T > 0 be-

cause of the combined effects of depletion and thermal excitations. The excitations

form the elementary excitations of the entire system. Thus, at the simplest level

of description, these can be treated as non-interacting quasiparticles. At T = 0,

helium II is a pure superfluid, leading to the identification that superfluid density

includes both the condensate and the depleted particles; and at T > 0, thermal

excitations constitute the normal fluid.

1.3.1 Superfluid equations of motion

The discussion below closely follows that in Refs. [24, 30–32], for the heuristic

derivation of the equation of motions for superfluid and normal fluid. Let us pos-

tulate that the condensate behaviour is governed by a single wave function ψ(r, t)

with coherent phase θ(r, t), i.e.,

ψ(r, t) = ψ0(r, t) exp
[
iθ(r, t)

]
, (1.23)

which is a solution of the Schrödinger equation

i~
∂ψ

∂t
= − ~2

2m
∇2ψ + V (r)ψ, (1.24)
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where m is the mass of the condensate atoms and V (r) is the potential energy. The

wave function ψ is normalized such that

|ψ|2 = |ψ0(r, t)|2 =
ρs
m
. (1.25)

A thermodynamic description of superfluidity is possible, if the superfluid density

ρs and the potential V (r) are slowly varying functions of space and the volume el-

ements in which ρs is uniform are macroscopic in size. V (r) is a thermodynamic

parameter, since it is the potential energy of each one of the macroscopically large

number of atoms in the volume element about r. By using the first law of ther-

modynamics, a reversible change in the total energy U0 of a fluid at rest can be

expressed as

dU0 = TdΣ+ µdN − pdV, (1.26)

where the independent variables entropy Σ, number of particles N and volume V

determine the state of the system; T is the temperature, µ the chemical potential,

and p the pressure. Thus,

µ =
(∂U0

∂N

)
Σ,V

(1.27)

is the energy gained by the fluid when one single particle is added to it. If the

superfluid has kinetic energy Us,K , then the total energy of the fluid becomes

U = Us,K + U0. (1.28)

Consider the motion of a volume element, with ∆N superfluid atoms in thermody-

namic equilibrium with the rest of the fluid, from point A to point B in a superfluid

flow, in which the total energy and the entropy do not change; for such a motion

the change in the total energy is

∆U = ∆Us,K +

[(∂U0

∂N

)B
Σ,V

−
(∂U0

∂N

)A
Σ,V

]
∆N = 0; (1.29)

whence
∆Us,K

∆N
= −

(
µB − µA

)
. (1.30)

Therefore the chemical potential of the whole fluid plays the role of the potential

energy per particle of the supefluid; also, Eq. (1.30) shows that the superfluid is

accelerated when it flows from a region of high to a region of low chemical potential.

Thus, by replacing the V (r) by µ in Eq. (1.24), we obtain

i~
∂ψ

∂t
= − ~2

2m
∇2ψ + µψ. (1.31)
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The substitution of Eqs. (1.23) and (1.25) in the above equation yields, for the con-

densate phase θ,

~
∂θ

∂t
= −µ+

~2

2m

(
∇θ
)2

+
~2

2m

∇2√ρs√
ρs

. (1.32)

By using Eq. (1.24) and its complex conjugate, the equation of continuity for the

probability density |ψ|2 can be written as

∂|ψ|2
∂t

= −∇ · Jp, (1.33)

where

Jp = − i~

2m

(
ψ∗∇ψ − ψ∇ψ∗

)
, (1.34)

is the probability current density. Substitution of Eq. (1.23) and (1.25) in the

Eq. (1.33) gives the following equation of continuity for the superfluid density:

∂ρs
∂t

= −∇ · js, (1.35)

where

js =
~

m
ρs∇θ ≡ ρsvs (1.36)

is the superfluid current density with

vs =
~

m
∇θ (1.37)

the superfluid velocity. The gradient of Eq. (1.32), along with Eq. (1.37) gives the

following equation of motion for the superfluid

m
∂vs

∂t
= −∇

(
µ+

1

2
mv2

s

)
+

~2

2m
∇∇2√ρs√

ρs
. (1.38)

The last term in equation 1.38 contributes significantly only when there is a rapid

variation in ρs, e.g., near a wall or inside a vortex; it can be neglected while describ-

ing a bulk superfluid. Therefore, the equation of motion for the superfluid becomes

Dvs

Dt
=
∂vs

∂t
+ vs · ∇vs = − 1

m
∇µ, (1.39)

which is the Euler’s equation for an ideal fluid.

The Gibbs energy for a fluid at rest is G = U0 − TΣ + pV , thus, the differential

change in G after substituting for dU0 is dG = µdN −ΣdT + V dp, which gives, after

integration,

Nµ(p, T ) = G(N, p, T ); (1.40)

therefore, the chemical potential can also be interpreted as the Gibbs energy per

particle for given values of p and T . By using Eq. (1.40), a small reversible change
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in µ, at constant N , can be obtained as

Ndµ =
(∂G
∂p

)
N,T

dp+
(∂G
∂T

)
N,p
dT, (1.41a)

= V dp− ΣdT, (1.41b)

where we have identified
(

∂G
∂p

)
N,T

and
(

∂G
∂T

)
N,p

with V and −Σ, respectively. Thus,

Eq. (1.41b), when expressed for a gradient of µ, becomes

∇µ =
V

N
∇p− Σ

N
∇T, (1.42)

which yields, with Eq. (1.39),

Dvs

Dt
=
∂vs

∂t
+ vs · ∇vs = −1

ρ
∇p+ σ∇T, (1.43)

where Nm/V is the total density of the superfluid and σ = Σ/Nm the total entropy

per unit mass.

The total density and the total mass current density are given by

ρ = ρs + ρn (1.44)

and

j = ρsvs + ρnvn, (1.45)

respectively. The conservation of the total mass of the fluid, is expressed by the

continuity equation
∂ρ

∂t
= −∇ · j. (1.46)

In the limit of small velocities the viscous dissipation in the normal fluid can be

neglected and the total entropy of the fluid is conserved. Thus, the equation of

continuity for the entropy density ρσ can be written as

∂ρσ

∂t
= −∇ ·

(
ρσvn

)
, (1.47)

where ρσvn is the entropy-current density, (all the entropy is carried by the normal

fluid). Thus, for an incompressible flow, where ρ, ρs, ρn and σ are all constant,

Eq. (1.47) gives ∇ · vn = 0, which in turn yields ∇ · vs = 0 by virtue of Eqs. (1.45)

and (1.46). The Navier-Stokes equation is used to describe the motion of the whole

fluid:

ρs
Dvs

Dt
+ ρn

Dvn

Dt
= −∇p + νn∇2vn, (1.48)

where νn is the viscosity of the normal fluid. By multiplying Eq. (1.43) by ρs and,

subsequently, subtracting it from Eq. (1.48) gives the following equations of motion
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for the superfluid and the normal fluid velocities:

ρs

(∂vs

∂t
+ vs · ∇vs

)
= −ρs

ρ
∇p+ ρsσ∇T ; (1.49a)

ρn

(∂vn

∂t
+ vn · ∇vn

)
= −ρn

ρ
∇p + ρnσ∇T + νn∇2vn; (1.49b)

these are valid at small velocities.

As mentioned earlier, in the two-fluid model the gas of thermal excitations con-

stitute the normal fluid; moreover, because the total number of excitations is not

conserved, we use Planck’s distribution function

n(εn) =
1

exp(εn/kBT )− 1
, (1.50)

where εn is the thermal-excitation energy in the normal-fluid rest frame. The cre-

ation of an excitation, with momentum p and energy εn in the normal-fluid rest

frame, is equivalent to an excitation with momentum p and energy εn+p · (vn−vs)

in the superfluid rest frame; clearly, vn − vs is the relative velocity of the normal-

fluid rest frame with respect to the superfluid rest frame; vn and vs are defined

with respect to the laboratory frame. The distribution function Eq. (1.50) can be

written as

n(ε) =

[
exp
(ε(p)− p · (vn − vs)

kBT

)
− 1

]−1

, (1.51)

where ε(p) is the energy spectrum measured in the superfluid rest frame. The

discussion above shows that (vn − vs), is an extra thermodynamic parameter for

the helium II. Relative to the superfluid rest frame, the drift momentum density of

the excitations is

jd = ρn(vn − vs), (1.52)

and the change in the total energy density is given by

dUSRF = Td(ρσ) +
µ

m
dρ+ (vn − vs) · djd, (1.53)

which can be compared with Eq. (1.26); the subscript SRF denotes superfluid rest

frame. Thus the thermodynamic relation Eq. (1.53) can be used to determine the

chemical potential as follows:

1

m
µ(p, T,vn − vs) =

1

m
µ(p, T, 0)− ρn

2ρ
(vn − vs)

2, (1.54)

where µ(p, T, 0) is the chemical potential in the absence of relative motion. Use of

µ(p, T,vn − vs) in Eq. (1.39) gives the following equation for the superfluid velocity

ρs

(∂vs

∂t
+ vs · ∇vs

)
= −ρs

ρ
∇p+ ρsσ∇T +

ρsρn
2ρ

∇(vn − vs)
2, (1.55)
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Figure 1.7: Sketch of the experimental setup used by H. E. Hall and W. F. Vinen to determine

the existence of the mutual friction force. The resonators: (a) axial mode resonator; (b) radial

mode resonator. In each resonator the heater consists of about 60 cm 50 s.w.g eureka wire and the

thermometer about 60cm 0.003 in. phosphor-bronze wire, wound across the rings A and B in the axial

mode resonator and round the cylinder D in the radial mode resonator. The arrow C indicates the

axis of rotation for the axial mode resonator on its side; when rotation is about this axis the second

sound propagation direction is normal to the axis of rotation, as with the radial mode resonator.

Our caption follows the caption of Fig.1 in Ref. [33].

which, when subtracted from the Navier-Stokes Eq. (1.48), yields an equation for

the normal fluid

ρn

(∂vn

∂t
+ vn · ∇vn

)
= −ρn

ρ
∇p+ ρnσ∇T − ρsρn

2ρ
∇(vn − vs)

2 + νn∇2vn; (1.56)

Eqs. (1.55) and (1.56) are valid at higher velocities as compared to Eqs. (1.49a) and

(1.49b). At higher velocities the normal fluid can become turbulent and then there

can be interaction between the fluids.

1.3.2 Mutual friction

For T < Tλ, the scattering of the thermal excitations, constituting the normal fluid,

by the quantized superfluids vortices results in a force of interaction between the

two fluids known as mutual friction. In experiments performed in helium II, it

has been observed that in the temperature range 1K < T < Tλ the collision of

the rotons with the vortices is the major contributor to the mutual friction. The

collision cross-section for the above scattering depends strongly on the direction of

the relative velocity between the drifting rotons and the quantized vortex line: it

is maximum for perpendicularly incident rotons and almost zero if their incidence

is parallel incidence.

Experimental determination of mutual friction

Hall and Vinen performed experiments on the propagation of second sound in uni-

formly rotating helium II to determine the existence of mutual friction [33, 34].
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s
′

s
′
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′′

s
′′

κ̂
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Arbitrary origin

s(ζ, t)

Figure 1.8: The instantaneous local configuration of the vortex filament at point s, represented

by a parametrised curve s(ζ, t), can be characterized by a triad of mutually perpendicular vectors

s
′(= ds/dζ ∼ 1), s

′′(= d2s/d2ζ ∼ R−1), and s
′ × s

′′(∼ R−1), which are directed along the local

tangent (in turn, it points in the direction of the circulation), the principal normal, and the binormal,

respectively. The local induced velocity at a point in the fluid approximately points in the direction

of s′ × s
′′.

They used two resonant cavities, each immersed in a vessel containing helium II

and rotating about a particular axis; in one the second sound was propagated in

a direction parallel to the axis of rotation; in the other it was propagated perpen-

dicular to the rotation axis. They found that the second sound suffered an appre-

ciable excess attenuation when propagating perpendicular to the axis of rotation,

for uniformly rotating helium II, in comparison to the non-rotating case. Thus,

they concluded that the attenuation of second sound, in uniformly rotating helium

II, arises because of a volume force and depends on the orientation of the velocity

(vs − vn) in the second-sound wave relative to the axis of rotation. Moreover, the

mutual friction force Fsn per unit volume acting on the normal fluid must be pro-

portional to both (a) (vs − vn), (b) Ω the angular velocity of rotation, and, to a first

approximation is

Fsn = −Bρsρn
ρ

Ω× [Ω× (vs − vn)]

|Ω| −B′ρsρn
ρ

Ω× (vs − vn); (1.57)

B and B′ are dimensionless coefficients and are measured in experiments; (vs −
vn) is the instantaneous counterflow velocity. The parameter B depends on the

direction of (vs−vn) relative to the rotation axis; it is a constant for all orientations

of (vs−vn) that lie in a plane perpendicular to the axis of rotation and is zero along

it. The B term in Eq. (1.57) is responsible for the excess attenuation and the B′

term produces a shift in the second-sound frequency.
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At finite temperatures the Magnus force acting on a quantized vortex line is

fM = ρsκs
′ × (vL − vsl), (1.58)

where vL and vsl are the macroscopically averaged vortex-line velocity and the local

superfluid velocity, respectively. The drag force acting on the vortex line due to the

interaction with the normal fluid can be written as

fD = −αρsκs′ ×
[
s′ × (vn − vsl)

]
− α′ρsκs

′ × (vn − vsl), (1.59)

with α and α′ being the temperature-dependent coefficients. If the vortex is re-

garded as a true line or filament and the inertia associated with its core is ne-

glected, then the sum of the Magnus and the drag force, must add up to zero

fM + fD = ρsκs
′ ×
[
(vL − vsl)− αs′ × (vn − vsl)− α′(vn − vsl)

]
= 0, (1.60)

because these being the only forces acting on the vortices. For Eq. (1.60) to be

satisfied, the terms in the square bracket must either be in the direction of s′ or

equal to zero; the latter condition gives the following expression for the velocity of

any point on the vortex line (see Fig. 1.8):

vL = vsl + αs′ × (vn − vsl)− α′s′ ×
[
s′ × (vn − vsl)

]
. (1.61)

In rapidly rotating helium II at finite temperatures, a uniform array of vortices

is produced parallel to the rotation axis; thus, in the equilibrium the sum of the

force per unit volume on the normal fluid plus the drag force per unit volume on

the quantized vortices must vanish

Fns + n0fD = 0, (1.62)

where n0 = ∇ × vs/κ = 2Ω/κ is the number of vortices per unit area. Hence, the

mutual friction force is given by

Fns = ωsρss
′ ×
[
s′ × (vn − vs)

]
+ ωsρsα

′s′ × (vn − vs), (1.63)

where ωs = ∇ × vs is the superfluid vorticity and vs = vsl, assuming the vortex

lines to be straight, so that the self-induced velocity is zero. If the vortex lines are

curved, then the self-induced velocity vsi is not zero. If the curvature of the vortex

lines is small enough, then the self-induced velocity vsi ≈ (κ/4πR) ln(L/a)s′ × s′′,

where a is the size of the vortex core and L is some characteristic microscopic length

whose choice depends on the details of the vortex configuration, e.g., the radius of

curvature or the inter-vortex separation. We can rewrite vsi ≈ ̟(s′ · ∇)s′, where

̟ = (κ/4π) ln(L/a) = ε/ρsκ with ε being the kinetic energy per unit length of the
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potential flow around a vortex core and s′ × s′′ = (s′ · ∇)s′ (for details we refer

to [30, 35]). Furthermore, if the density of vortex lines is high, then they can be

assumed to form a continuum. If we use

vsl = vs + vsi = vs +̟(s′ · ∇)s′, (1.64)

under such conditions in Eqs. (1.59) and (1.62) we obtain the following generalized

form for the mutual friction force:

Fns = ωsρss
′ ×
[
s′ × (vn − vs)

]
+ ωsρsα

′s′ × (vn − vs)

+ ρsωsα̟∇× s′ + ρsωsα
′̟(s′ · ∇)s′,

(1.65)

where the last two terms come from the self-induced velocity and in the third term

the vector relation (s′ · ∇)s′ = −s′ ×∇s′ has been used. Moreover, the self-induced

velocity also introduces a term̟ωs(s
′ ·∇)s′ in the equation of motion of vs Eq. (1.38).

Therefore, the generalized equations of motion for the superfluid and the normal

fluid are given by

ρs
Dvs

Dt
= −ρs

ρ
∇p+ ρsσ∇T +

ρsρn
2ρ

∇(vn − vs)
2 + ρs̟ωs(s

′ · ∇)s′ − Fns (1.66)

and

ρn
Dvn

Dt
= −ρn

ρ
∇p+ ρnσ∇T − ρsρn

2ρ
∇(vn − vs)

2 + Fns + νn∇2vn, (1.67)

respectively. The Eqs. (1.65), (1.66) and (1.67) are together known as the Hall-

Vinen-Bekarevich-Khalatnikov (HVBK) equations [30,32].

Before proceeding further, we present a brief overview of the important exper-

iments and their outcomes, performed in liquid 4He and BECs of alkali atoms to

study the properties of superfluid turbulence in Sec. 1.4.1; we do not discuss exper-

iments done on 3He-B, which exhibits superfluidity at extremely low temperatures.

In Sec. 1.4.2 we give an outline of the important phenomenological models used in

the field of superfluid turbulence. For details we refer to excellent reviews on the

subject [3,36–45].

1.4 Superfluid turbulence

Fluid turbulence invariably involves rotational motion; the same is true in super-

fluid turbulence, but there are important differences, between normal fluid turbu-

lence and superfluid turbulence, which we briefly outline below. Superfluids can

sustain rotational motion only through the formation of vortices, where the circu-

lation Γ around a vortex is quantized in units of κ, i.e.,

Γ =

∮

C

us · dl = nκ, (1.68)
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(a) (b) (c) (d)

(e) (f) (g)

Figure 1.9: (a)-(f) Development of a vortex tangle in a channel starting with an initial configuration

of six vortex rings under the influence of a pure superflow driving field; (g) time evolution of the

vortex-line length per unit volume. Images (a)-(f) and (g) taken from Figs.1 and 2 in Ref. [50],

respectively.

where κ ≡ h/m; us is the superfluid velocity, m the mass of the superfluid atom, and

h the Planck’s constant. A superfluid vortex is an example of a topological defect,

unlike vortices in classical fluids, which can have any value of circulation. A super-

fluid vortex can not decay by the process of viscous diffusion of vorticity. Moreover,

the vortices in superfluids are extremely thin, with a core size ξ ≃ 10−10m in helium

II, and are distinctly identifiable. Historically, Feynman had discussed the possi-

bility that helium II flow can become turbulent by forming a dynamic, random,

tangle of interacting quantized vortices [1], this was subsequently confirmed in ex-

periments [46–49]. Superfluid turbulence is also referred to as quantum turbulence

because of the presence of quantized vortices; and superfluid motion is influenced

by quantum mechanical effects.

Most of the early understanding about the superfluid turbulence came from the

thermal-counter-flow experiments in helium II, where at temperatures above 1K

homogeneous turbulence, in the form of a tangle of quantized vortices, was pro-

duced and sustained by the relative motion between the superfluid and the normal

fluid [46–49]. The findings of the thermal counterflow experiments were repro-

duced in the pioneering simulation studies of K. W. Schwarz, who demonstrated the
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existence of a dynamically self-sustaining random tangle of quantized vortex lines

in helium II by including a mutual friction between the two fluids and requiring

that two vortices undergo a reconnection event when they come very close together;

he used a vortex-filament model (VFM) along with a local-induction approximation

(see the subsection on VFM below), in which the vortices are treated as filaments

with velocity at any point on it given by Eq. (1.61) [50–52]. Figure 1.9 shows the

development of a vortex tangle in a channel starting with an initial configuration

of six vortex rings under the influence of a pure superflow driving field; for details

we refer the reader to Ref. [50]. In view of Fig. 1.9(f) we can introduce a length

scale ℓv denoting the inter-vortex separation. The existence of a turbulent state in

superfluids provides enough motivation to explore the similarities and differences

with classical counterpart. Counterflow-turbulence experiments, do not have any

classical analogue. Therefore, many experiments have been performed on helium

II by adopting turbulence-production schemes similar to those used in turbulence

experiments on classical fluids [40, 43]. These experiments have shown that, on

length scales ℓ ≫ ℓv, superfluid and classical-fluid turbulence are similar. This

is supported by the following observations: (a) the existence of Kolmogorov-like

regime with E(k) ∼ k−5/3 form in the inertial range [53–55]; (b) a classical decay of

the vorticity ω ∼ κL as ω ∼ t−3/2, independent of the turbulence-production mech-

anism, with an effective dissipation ǫ = ν ′〈κ2L2〉, where L ∼ ℓ−2
v is the vortex-line

density, ν ′ the effective kinematic viscosity, and the quantity 〈κ2L2〉 is the measure

of the effective mean square vorticity due to vortex lines [56–58]. In the superfluid-

turbulence literature, the standard symbol for the vortex-line density is L. In our

numerical simulations L denotes the box size. The meaning of this symbol should

be clear from the context in which it is used. Hence, for length scales ℓ≫ ℓv turbu-

lence in superfluids is also referred to as the quasi-classical turbulence.

In helium II at finite temperatures the dissipation occurs because of the com-

bined effects of (a) viscous processes in the normal fluid and (b) the mutual fric-

tion; the dissipation from the mutual friction is effective only at length scales

ℓ . ℓv. The mechanism of energy dissipation at very low temperatures, in the

limit ρn → 0, is still an area of active research; at these temperatures the dis-

sipation due to the mutual friction becomes ineffective and we have to look for

other dissipative mechanisms. The reconnection of a pair of quantized vortices oc-

curs naturally, when they are within a distance of the order of few core lengths,

as first shown by Koplik and Levine in the nonlinear Schrödinger equation model

for the superfluids [59]; this reconnection involves acoustic-wave emission [60,61];

moreover, oscillatory motion of the vortex core can also radiate phonons, but these
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H

T +∆T TNormal fluid

Superfluid

Figure 1.10: Schematic view of the experimental design to produce counterflow turbulence in he-

lium II and its detection using the second sound attenuation method (green curve), for details see

text 1.4.1.

two process together are insufficient to account for the decay of superfluid turbu-

lence at low temperatures. According to the current understanding, during the

reconnection events small-scale structures (“kinks”) are formed on the vortices and

Kelvin waves are excited on the vortex lines; the nonlinear coupling of these waves

produces high-frequency oscillations that eventually radiate phonons into the sur-

rounding fluid (for details we refer the reader to the references contained in the

reviews Refs. [3,36,38,62]).

1.4.1 Experiments

Thermal-counterflow turbulence

Experiments on counterflows of helium II were the earliest attempts to demon-

strate the existence of a turbulent state in superfluids. The first detailed investi-

gations of such counterflow turbulence were performed by W. F. Vinen, in an influ-

ential series of papers in 1957 [46–49]. Thermal counterflow is a special feature

of superfluid flow, which relies on its two-fluid nature; Fig. 1.10 shows a schematic

experimental set up, where counterflow can be generated by passing a direct cur-

rent through a resistor located at the closed end of a channel open to a helium II

bath at the opposite end. In helium II at finite temperatures heat and entropy are

transported by the normal fluid; therefore, when heat is generated at the closed

end of the channel the normal fluid flows from the heat source to the sink, which

in the present case is the helium II bath. The superfluid flows in the opposite di-

rection to conserve the total mass; this establishes a relative/counterflow velocity

vns = vn − vs along the length of the channel. It was observed that at relatively

small values of vns, the heat transport is affected by the resulting superfluid tur-

bulent state in the form of a disordered tangle of vortex lines, whose intensity can

be characterized by a vortex line density L, the total length of vortex lines in a
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unit volume. Assuming an approximately homogeneous vortex line density, Vinen

proposed the following phenomenological model for its time evolution, based on the

dimensional arguments:

dL

dt
=
ρnB

2ρ
χ1vns −

κ

2π
χ2L

2, (1.69)

where χ1 and χ2 are undetermined dimensionless constants. The first term in

Eq. 1.69 describes the production and the growth of the vortex tangle and the sec-

ond term its decay. In the steady state, the Eq. 1.69 predicts that

L =
πρnBχ1

ρκχ2
v2ns. (1.70)

The quantity L is adequate to describe most of the phenomena observed in steady-

state counterflow turbulence and the length scale associated with it, ℓv = 1/
√
L, is

the average distance between the quantized vortices. Steady-state counterflow tur-

bulence has no analogues in classical-fluid flows, except its relatively unexplored

similarity with the turbulent thermal convection; turbulent heat transport in both

displays a power-law dependence on the temperature difference with an exponent

close to 1/3 [58].

Superfluid turbulence driven by two counter-rotating disks

Maurer and Tabeling [53] investigated turbulent flow in liquid helium confined in

a cylinder driven by two counter-rotating disks with blades, in a range of tempera-

tures between 1.4 and 2.3K; thus, the measurements were done in both the super-

fluid and the classical-turbulence regimes. The Fig. 1.11(a) shows a sketch of the

experimental set up. In the experiment the local pressure fluctuations were mea-

sured by using a small, total-head pressure tube in the region with non-zero axial

mean flow; the pressure fluctuations at the total-head tube are due to the velocity

fluctuations, so the measurements can be used to construct the energy spectra, as

shown in Fig. 1.11(b) for three different temperatures: (a) at 2.3K, above the super-

fluid transition temperature Tλ, (b) at 2.08K, just below Tλ, and (c) at 1.4K, below

Tλ with large superfluid fraction. The experiment showed that: (1) the form of the

energy spectra are similar both above and below Tλ with a Kolmogorov-like scal-

ing regime, revealing a similarity between ordinary and superfluid turbulence; (2)

the cascade processes are ubiquitous, independent of the energy dissipation mech-

anism at small scales, as different dissipation mechanisms dominate at tempera-

tures above Tλ and much below it; (3) the inertial range-intermittency is present

even at temperatures below Tλ.
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(a) (b)

Figure 1.11: Superfluid turbulence driven by two counter-rotating disks: (a) sketch of the exper-

imental set up; 1: DC Motor, 2: propeller, 3: probe; (b) energy spectra obtained in the same con-

ditions, but at different temperatures: (a) 2.3K; (b) 2.08K; (c) 1.4K. The spectra have been shifted

vertically so as to make their representation clear. Images in (a) and (b) are from Figs.1 and 2 in

Ref. [53], respectively.

Grid turbulence in helium II

In classical fluids grid experiments have been used to study the properties of both

the fully developed and the decaying homogeneous and isotropic turbulence pro-

duced behind the grid. Figure 1.12(A) shows a sketch of the experimental set up

used by R. J. Donnolly and his collaborators to study decaying, homogeneous tur-

bulence produced in a stationary sample of helium II by towing a grid [63]. To

probe the vortex line density, L, produced in the turbulent state, the second-sound-

attenuation technique was used. Superfluid vorticity was defined in terms of the

vortex line density as ωs(t) = κL. The experiments showed that there is no appre-

ciable difference in the decay of the ωs(t) curves, obtained over a temperature range

of 1.4 to 2.15K, which corresponds to an order-of-magnitude difference in the normal

fluid fraction ρn/ρ; after the saturation of the energy-containing length scale at the

size of the channel, the superfluid vorticity decays as ωs(t) ∝ t−3/2 (see Fig. 1.12(B))

[56]. Thus, the study of the grid-generated decaying helium II turbulence experi-

ments can used to understand classical-fluid turbulence.

Flow visualization around a cylinder in counteflow helium II

Visualization of the superfluid flow in helium II is a challenging problem, but it

can yield direct evidence about the existence of turbulent structures. Figure 1.13

shows the use of the particle-image-velocimetry (PIV) technique to visualize the

counterflow in helium II over a circular cylinder [64]. Counterflow was generated

in a one-dimensional rectangular channel (200−mm long, cross-section 38.9×19.5−
mm2), which was immersed in a constant-temperature helium II bath; the flow was

seeded with polymer particles of diameter 1.7µm and specific gravity equal to 1.1.
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(A) (B)

Figure 1.12: Grid turbulence in helium II: (A) (a) Lay out of the apparatus to study grid turbulence.

(i) Vacuum seal, (ii) 5/16 rod, (iii) grid, (iv) germanium thermometer, (v) counterflow heater, (vi)

second sound transducer pair, and (vii) stepper motor. (b) Detail of grid construction. Our caption

follows the caption of Fig.1 in Ref. [63]. (B) Decay of vorticity for grid velocities of 5, 10, 50, 100, and

200cms (top curve) at 1.5K. Our caption follows the caption of Fig.2 in Ref. [56].

(a) (b)

Figure 1.13: Flow visualization around a cylinder in counteflow helium II. (a) Raw data produced by

the PIV experiment, showing suspended particles in the helium II channel at T = 2.03K; (b) and (c)

velocity streamlines for particle motion at T = 1.6K, q = 4kWm−2 and T = 2.03K, q = 11.2kWm−2,

respectively. Images (a) and (b) are from Figs.1 and 2 in Ref. [64], respectively.
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Figure 1.14: Quantized vortex cores in liquid helium. (a)-(d), Images of particles (light against dark

background) obtained with a camera and 105 −mm lens under different conditions: (a), just above

the transition temperature, when they are uniformly dispersed; (b), (c), on branching filaments at

tens of millikelvin below the transition temperature; and (d), regrouping along vertical lines for

steady rotation about the vertical axis. In (b) and (c), the particles on lines are evenly separated in

small regions. Scale bar, 1mm. Our caption follows the caption of Fig.1 in Ref. [65].

As typical in counterflow channels, heat flux was applied at the closed end and

the top end was open to the helium II bath. A transparent cylinder of diameter

6.35 − mm was placed inside the channel spanning the full width and orthogonal

to the counterflow (for details see Ref. [64]). The experiment demonstrated the

existence of large turbulent structures in the counterflow around a cylinder; more-

over, in contrast to the classical-fluid case in which macroscopic eddies are present

downstream of the cylinder, the particle motion driven by the counterflow in he-

lium II showed such structures, both downstream and in front of the cylinder, thus

indicating that both the fluids may be undergoing a kind of flow separation while

passing over the cylinder.

Visualization of quantized vortices

Superfluids can sustain rotational motion only by forming quantized vortices. Vi-

sualization of these vortices can help to understand the geometries and the inter-

actions between them, which is of prime importance in the studies of superfluid

turbulence. In a series of experiments Bewley et al. have used small particles of

solid hydrogen to image the cores of quantized vortices in their three-dimensional

environment of helium II [65, 66]. They generated smaller hydrogen particles by

injecting a premixed gaseous solution of hydrogen, greatly diluted with helium,
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into liquid helium I; the suspension was then cooled to below the superfluid tran-

sition temperature. The subsequent visualization procedure showed that apart

from tracing the fluid motion, the particles get trapped on slender filaments, which

many a times are several millimetres long (see Fig. 1.14). The experiments have

conclusively shown that: (1) the vortex filaments appear only in the superfluid

phase of helium, upon rotation of the vessel containing helium; (2) the particles

arrange themselves along the uniformly spaced vortex filaments; (3) the number

density of lines per unit area normal to the axis of rotation, for a series of rotation

rates, is consistent with Feynmans rule, which predicts about 2, 000Ω lines per cm2,

where Ω is the angular velocity of the vessel in radians per second. In subsequent

experiments they were able to visualize directly the reconnection processes [66]

and emission of Kelvin waves [67].

Helium wind-tunnel experiments

Homogeneous and isotropic turbulent flows were generated in liquid helium by

continuous driving by using propellers (see Refs. [54,55,69,70]), which allowed bet-

ter statistical convergence and improved stationarity than measurements in non-

stationary flows. In Fig. 1.15(a) we show the schematic diagram of the TOUPIE

wind tunnel used in the study of Ref. [55]. The wind tunnel was operated down

to 1.56K and up to Taylor-microscale-based Reynold’s number Rλ = 1640. Local-

velocity measurements were made in the far wake of a disc (see Fig. 1.15(a)).

The experiments showed the following (see Figs. 1.15 (b)-(d)): (i) the Kolmogorov

4/5−law of classical turbulence remains valid in superfluid turbulence, at least at

the largest inertial scales; (ii) energy spectra exhibit a Kolmogorov scaling regime

E(K) ∼ k−5/3 both above and below the superfluid transition temperature Tλ; (iii)

the velocity-component PDFs are nearly Gaussian below Tλ.

Turbulence in three-dimensional BECs

Bose-Einstein condensates (BECs) of bosonic atoms in traps can be prepared in a

controlled manner by tuning parameters like the interactions between the atoms,

atomic density, and trapping configurations. Trapped BECs exhibit superfluidity,

thus they provide us a means of studying superfluid turbulence. Dynamics of quan-

tized vortices is an area of active study in such systems, in which it is also possible

to visualize these vortices by optical means, upon the expansion of the cold-atom

system after it has been released from the trap. Recently, a vortex tangle was

created in a magnetically trapped BEC of 87Rb atoms by the application of an ex-

ternal perturbation in the form of an oscillating magnetic field [71]. Figure 1.16(a)
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(a)
(b)

(c)

(d)

Figure 1.15: Helium wind tunnel experiments. (a) Wind tunnel (in blue) in the cryostat (in grey)

(Figure taken from Ref. [68]). (b) Experimental third-order velocity structure function compen-

sated by the 4/5−law obtained in superfluid helium at T =1.56K (blue circles) and in classical liquid

helium at T =2.2K (red squares). Inset: skewness of the distribution of longitudinal velocity incre-

ments (same color code). The smallest abscissa r/L0 = 7102 corresponds to the probe cut-off. The

oscillation at large scales is related to the frequency of the vortex shedding (Our caption follows

caption of Fig.4 in Ref. [55]). (c) Experimental 1D velocity power spectrum above and below the

superfluid transition. Red line: T = 2.2K > Tλ at Rλ ≈ 1640. Blue line: T = 1.56K < Tλ. In-

set: velocity probability density distribution above and below the superfluid transition. Black line:

Gaussian distribution (Our caption follows caption of Fig.2 in Ref. [55]). (d) Experimental histogram

of the longitudinal velocity increments at large and intermediate scales in a superfluid turbulent

flow (T = 1.56K). Solid black line: Gaussian PDF (Our caption follows caption of Fig.3 in Ref. [55]).
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Figure 1.16: Turbulence in a 3D BEC. (a) Atomic optical density after 15 ms of free expansion

showing vortex structures spread all around the cloud resembling a vortex tangle, and (b) schematic

diagram showing the inferred distribution of vortices as obtained from the image shown in (a). Our

caption follows the caption of Fig. 2 in Ref. [71].

shows the vortex structures in the atomic optical density and Fig. 1.16(b) shows the

schematic distribution of the vortices in (a). Experiments have shown that the tur-

bulent regime, with tangled vortices, changes the hydrodynamic behaviour of the

atomic cloud, where the aspect-ratio (ratio of axial and radial widths) inversion is

suppressed during the free-expansion of the cloud.

Turbulence in two-dimensional BEC

In BEC experiments the geometry and the dimensionality of the confining poten-

tials can be varied in a controlled fashion to create two-dimensional (2D) conden-

sates; the generation of turbulence in such condensates is an exciting possibility,

which can aid in the understanding of 2D superfluid turbulence (also referred to as

quantum turbulence). Neely et al. [72] generated a two-dimensional quantum tur-

bulence (2DQT) in highly oblate BECs, produced by utilizing optical and magnetic

confinement. BECs of up to ∼ 2× 106 87Rb atoms were produced in a harmonic po-

tential with radial (r) and axial (z) trapping frequencies (ωr/2π, ωz/2π) = (8, 90); 2D

vortex dynamics was achieved by the tight confinement, along the z−axis, which

suppressed the bending and the tilting motion of the vortices. Moreover, the trap

was made annular by passing a blue-detuned Gaussian laser beam along the trap

axis. A large number of vortices were nucleated by moving the harmonic trap cen-

ter, but not the central barrier, with the help of a magnetic bias field; the vortices

so produced were distributed in a disordered fashion, which was identified with a

2D turbulent state similar to the vortex-tangle in 3D superfluid turbulence. Fig-

ure 1.17 shows the experimental procedure and the observed vortex distribution.

The BEC was retained in the annular trap for a varying period of time allowing the

turbulence to decay, before ramping off the central barrier and releasing the atoms
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(A)

(B)

Figure 1.17: Turbulence in a 2D BEC. (A): (a) Timing sequence. (b,c) In situ BEC column-density

images prior to the stir, shown (b) in the plane of 2D trapping and (c) along the z axis. Lighter

shades indicate larger column densities, as in subsequent data. (d) Stirring illustration. The black

arrow shows the trap center trajectory relative to the larger fluid-free region created by the laser

barrier. (e) In situ BEC image 10 s after stirring. Our caption follows the caption of Fig. 1 in

Ref. [72]. (B): (a,b) 200−µm-square experimental column-density images acquired at the hold times

th indicated. BECs undergo ∼ 50−ms ballistic expansion immediately after barrier removal. Each

image is acquired from a separate experimental run. Our caption follows the caption of Fig. 2 (a,b)

in Ref. [72]
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from the trap to perform the absorption imaging of vortices on the expanding cloud.

In the experiments it was observed that the disordered vortex distribution of 2DQT,

following small-scale forcing, can be robust against immediate vortex-antivortex

annihilation and decay into large-scale flow as manifested by a persistent current,

which was interpreted as an experimental signature of the energy transport from

small to large length scales during the 2DQT forcing and decay.

1.4.2 Phenomenological Models

Three important phenomenological approaches have been used to investigate the

properties of turbulence in superfluids. Superfluidity occurs in a wide variety of

system e.g., 4He II, 3He-B, BECs of bosonic atoms in traps, neutron stars [2] etc.;

at the moment there is no single theory which encompasses all the systems and is

capable of predicting all dynamical effects across all length scales. Therefore, we

have to rely on phenomenological models, which are at times better suited for one

type of problem than for others. In our overview below, we focus on the concepts

needed for this thesis; for a more comprehensive introduction of the phenomeno-

logical models popularly used in the study of superfluid turbulence we refer the

reader to the following excellent reviews [36,40,43–45].

Gross-Pitaevskii description

At finite temperatures, below the Bose-Einstein transition temperature Tc, the

condensate coexists with the thermally excited particles, which form the thermal

cloud. In the T → 0 limit, the effect of the thermal cloud can be neglected and the

hydrodynamic description of a weakly interacting Bose gas is given by the Gross-

Pitaevskii equation (GPE)

i~
∂ψ(x, t)

∂t
= − ~2

2m
∇2ψ(x, t) + g|ψ|2ψ(x, t), (1.71)

where ψ(x, t) is a complex, classical field and g is the effective interaction strength [73,

74]. The Eq. (1.71) is a nonlinear Schrödinger equation and it can be derived using

the following action principle with a Lagrangian L:

δ

∫ t2

t1

Ldt = δ

∫ t2

t1

[∫
d3x

i~

2

(
ψ∗∂ψ

∂t
− ψ

∂ψ∗

∂t

)
−H

]
dt = 0; (1.72)

where H is the Hamiltonian of the system

H =

∫
d3x
( ~2

2m
|∇ψ|2 + g

2
|ψ|4

)
. (1.73)
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The dynamical evolution of the GP Eq. (1.71), conserves the total energyH (Eq. (1.73)),

the total number of particles

N =

∫
|ψ|2d3x, (1.74)

and the momentum

P =

∫
i~

2
(ψ∇ψ∗ − ψ∗∇ψ)d3x. (1.75)

We can express the GP Eq. (1.71) in terms of hydrodynamical variables by the

use of the Madelung transformation

ψ(x, t) =

√
ρ(x, t)

m
exp[i

m

~
φ(x, t)], (1.76)

where ρ(x, t) is the particle density and φ(x, t) the phase of ψ, which also acts as a

velocity potential. Therefore, we rewrite the Eq. (1.71) as

∂ρ

∂t
+∇ · (ρ∇φ) = 0; (1.77)

and
∂φ

∂t
+

1

2
(∇φ)2 + g

m2
ρ− ~2

2m2

∇2√ρ
√
ρ

= 0; (1.78)

Eq. (1.77) is the continuity equation and Eq. (1.78) is the equation of motion for the

field φ. The condensate velocity is

u(x, t) = ∇φ(x, t), (1.79)

which shows that the condensate motion is irrotational in the absence of any sin-

gularities in the field φ:

∇× u = ∇×∇φ = 0. (1.80)

We can find the equation of motion for the velocity u by taking the gradient of

Eq. (1.78) as
∂u

∂t
= −∇

(
µ̃+

1

2
mu2

)
, (1.81)

where

µ̃ =
g

m2
ρ− ~2

2m2

∇2√ρ
√
ρ
. (1.82)

The last term in the Eq. (1.82) is referred to as the quantum-pressure term; it arises

due to the spatial variations in the magnitude of the condensate wave function.

Healing length: If a condensate is confined in a box with infinitely hard walls,

then at the walls the condensate density must go to zero, and in the interior it

should be equal to its bulk value ρ0. The distance over which the condensate den-

sity recovers its bulk value is referred to as the healing length, which can be esti-

mated by the competition between the interaction energy term gρ0 and the kinetic
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energy term in the GP Eq. (1.71). If ξ is the spatial scale of variation, then the ki-

netic energy per particle is of order ~2/2mξ2; by equating it to the interaction term

we get ξ =
√

~2/2gρ0. ξ is also the length scale associated with the vortex core.

Elementary excitations: Linearization of the Eqs. (1.77), (1.81), and (1.82)

around the equilibrium state with ρ = ρ0+δρ and µ̃ = µ̃0+δµ̃, where the fluctuations

in density δρ and velocity are treated to be small gives the following equation of

motion:
∂2δρ

∂t2
= ∇ ·

(
ρ0∇δµ̃

)
, (1.83)

where

δµ̃ =
g

m2
δρ− ~2

4m2

∇2δρ

ρ0
. (1.84)

For a uniform system, if we consider travelling-wave solutions, proportional to

exp(ik · r − iωt), where k is the wave vector and ω the frequency, then Eq. (1.83)

leads to the Bogoliubov dispersion relation

ω(k) =
[gρ0k2
m2

+
~2k4

4m2

]1/2
. (1.85)

For small wave numbers k the spectrum ω(k) ∼ ck is sound-like, with sound velocity

c =
√
gρ0/m2; for large k the spectrum is quadratic and a free-particle behavior is

observed; this crossover occurs when the quantum pressure term dominates over

the usual pressure at around k ∼ ξ−1. Thus, on length scales larger than ξ, we

observe collective motion, whereas, on smaller length scales, excitations behave as

free particles.

Finite temperatures: The discussion that follows, is not comprehensive; we

present material that is directly needed for this thesis. The inclusion of finite-

temperature effects into the condensate dynamics, in the presence of the thermal

cloud, is a challenging problem and it is still an area of active research; for a com-

prehensive review we refer the reader to Refs. [44, 75–78]. If n(k) = 〈|ψ̂(k)|2〉 ≫ 1,

where ψ̂ denotes the Fourier transform of ψ, then quantum fluctuations can be

neglected in comparison to classical thermal fluctuations, and these modes may

be represented by a coherent wave function. This approximation becomes poor

for high-energy modes, whose occupation number is low at equilibrium. For even

higher-energy modes, the criterion n(k) ≫ 1 does not hold; for such modes a kinetic-

equation-based approach is appropriate. The GP Eq. (1.71) and its variants have

been used to describe the formation of a BEC and its various stages of evolution,

starting with different initial configurations for weakly interacting Bose gases [79–

85].

In this thesis, we use the truncated Gross-Pitaevskii equation (TGPE) [86], in

which we truncate the Fourier transform of the wave function for |k| > kmax, so
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that only highly occupied modes are retained. The spatiotemporal evolution of the

complex, classical, wave function ψ(x, t) describing the superfluid is given by

i~
∂ψ(x, t)

∂t
= PG

[(
− ~2

2m
∇2 + gPG[|ψ|2]

)
ψ(x, t)

]
, (1.86)

where g is the effective interaction strength, PG the Galerkin projector, i.e., PG[ψ̂(k)] =

θ(kmax − k)ψ̂(k), with ψ̂ the spatial Fourier transform of ψ and θ(·) the Heaviside

function. The Eq. (1.86) exactly conserves the energy

H =

∫
dx
[ ~2

2m
|∇ψ|2 + g

2

[
PG[|ψ|2]

]2]
, (1.87)

and the number of particles

N =

∫
dx|ψ|2. (1.88)

By using Fourier pseudospectral methods, we can show that the momentum

P =

∫
dx
i~

2
(ψ∇ψ∗ − ψ∗∇ψ) (1.89)

is also conserved, provided the dealiasing is performed by using the two-thirds rule

(kmax = 2/3×Nc/2 at resolution Nc).

The GP-equation-based approach is an useful model of superfluid turbulence at

low temperatures for weakly interacting Bose gases and applies only qualitatively

to helium II, where the interactions are strong. This approach can be used to

describe phenomena at the length scale ξ of the vortex core because it accounts for

the existence of vortices, their finite core size, and nucleation [30]. The GP equation

allows for the effects of compressibility, so it is able to describe the reconnection

between vortices in a self-consistent manner [59]; these are associated with the

emission of sound waves [60,61] and the generation of Kelvin-waves on the vortices.

Vortex-filament phenomenology

Quantized vortices in helium II can be regarded as filament in 3D, because the vor-

tex core size a ≃ 10−10m; these filaments, can be treated as classical object in many

physically relevant situations in superfluid flows, where the core size a is negligi-

ble in comparison to characteristic lengths in the hydrodynamic description of the

flow, e.g, the mean inter-vortex separation ℓv or the radius of curvature R of the

filaments. Therefore, while describing the large-scale motion of the superfluid, we

distinguish between the individual filaments, but ignore the details of the vortex

core. In such a description, each filament, with a fixed circulation κ, is represented

by a curve in the parametric form s = s(ζ, t), where ζ is the arc length along the
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filament. The superfluid flow outside the vortex-core region obeys Eulerian dy-

namics, and it is incompressible and irrotational. At T = 0 and in the absence of

any external force on the vortex core, the filament moves with the superfluid; the

velocity produced at a distance r from the core in an unbounded flow is given by

the Biot-Savart expression [52]

vs,ω(r, t) =
κ

4π

∫

L

(s1 − r)× ds1
|s1 − r|3 , (1.90)

where the integral is taken along the vortex filament L and s1 refers to a point on

the filament. The integral in Eq. (1.90) diverges as r approaches the point s1 on the

vortex filament; to avoid this divergence, the contribution to the velocity is divided

into local and nonlocal parts [52].

The instantaneous local configuration of the vortex filament at point s, repre-

sented by a parametrised curve s(ζ, t), can be characterized by a triad of mutually

perpendicular vectors s′(= ds/dζ ∼ 1), s′′(= d2s/d2ζ ∼ R−1), and s′ × s′′(∼ R−1),

which are directed along the local tangent (in turn, it points in the direction of

the circulation), the principal normal, and the binormal, respectively (see Fig. 1.8).

The local induced velocity at a point in the fluid points approximately in the direc-

tion of s′ × s′′. In the absence of any friction force, the instantaneous velocity of any

point on the vortex filament in an unbounded fluid is given by the expression [52]:

vL = ṡ0 = vs,a(s) +
κ

4π
s′ × s′′ ln

(
2(l+l−)1/2

e1/4a

)
+

κ

4π

∫ ′

L

(s1 − s)× ds1
|s1 − s|3 , (1.91)

where vs,a is the background superfluid velocity because of applied fields, a is the

phenomenological cut-off parameter that models the core of the vortex, l+ and l−

are the lengths of filament portions around the point s that are used in the calcu-

lation of the local contribution to the velocity at s, and the prime on the integral

denotes that the regions of the vortex filament contributing to the local part of the

velocity should be omitted. At finite temperatures, the gas of the elementary ex-

citations, which constitutes the normal component, are scattered by the quantized

vortices present in the superfluid. This, leads to the exchange of momentum be-

tween the two components; coupled with this, the drift velocity of the normal fluid

relative to the superfluid vn − vs, results in a frictional force f that acts on the

fluid in the neighbourhood of the core of the quantized vortex; vn is the average

velocity of the excitation gas constituting the normal fluid. Therefore, the modified

expression for the instantaneous velocity of any point on the vortex filament at

finite temperatures is given by Eq. (1.61).

In the vortex filament model (VFM) the normal-fluid velocity vn, which enters

in Eq. (1.61), should be solved for self-consistently to allow for a two-way coupling
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between the two fluids [87, 88]. However, a numerical implementation of such

a scheme is computationally very expensive, thereby reducing the usefulness of

the VFM. Therefore, the majority of studies that use the VFM assume an im-

posed normal-fluid velocity, which ignores the influence of the superfluid on the

normal fluid. The major drawback of the VFM is that it can not model a vortex-

reconnection event in a self-consistent manner. Such reconnections, have to be in-

troduced by hand when two segments of vortical filaments come close to each other.

The VFM does not support the generation of sound waves, which are allowed in the

GPE; thus it can not model dissipation at very low temperatures, where the mu-

tual friction is ineffective. Despite the above-mentioned weaknesses, the VFM has

been successfully used to study counterflow turbulence [50, 89], quasi-classical su-

perfluid tubulence [90–93], both forced and decaying, and the formation of coherent

structures under rotation [45].

Hall-Vinen-Bekharavich-Khalatnikov (HVBK) two-fluid model

The two-fluid model of superfluidity, proposed independently by Tisza [27, 28] and

Landau [29], lacked a vortex-dynamics description, as it came into existence be-

fore the discovery of quantized vortices in helium II. Therefore, it was modified

to include the effects of vortex dynamics; and the result was a generalized two-

fluid HVBK model; in Sec. 1.3.1 we have given a heuristic set of arguments to

arrive at the equations of motion for the superfluid and normal fluid velocity fields

Eq. (1.66) and (1.67), respectively. In the two-fluid HVBK model, we ignore the dis-

tinction between the individual quantized vortices present in helium II and deal

with a coarse-grained model, the vortices form a continuum over any patch of the

superfluid. Thus, if ℓv is the mean inter-vortex separation, then the HVBK model

is valid only on length scales ℓ ≫ ℓv. The HVBK prescription of coarse graining

the superfluid vorticity field is most suited for the cases where the vortex lines are

locally aligned, e.g., in laminar flows, where it is possible to define a macroscopic

vorticity field ωs by averaging out the length scales of the order of ℓv and smaller.

The HVBK Eq. (1.66) and (1.67) have also given results in agreement with Taylor-

Couette flows observed in helium II [94,95].

The use of the HVBK, two-fluid model can be extended to provide a phenomeno-

logical description of superfluid turbulence in helium II, where the turbulent state

is regarded as a random tangle of vortex lines. This HVBK treatment of super-

fluid turbulence can suffer from the drawback of underestimating (a) the super-

fluid vorticity ωs and (b) the mutual-friction-induced interaction between normal

and superfluid components of the fluid. This short-coming of the model is reme-
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died, to some extent, in the case of fully developed turbulence, where the contin-

uum approximation for the vorticity field is improved because of the presence of an

extremely large number of vortex lines. Therefore, the two-fluid HVBK model, can

provide a good description of the turbulent motion for length scales larger than ℓv.

The HVBK equations have been used in large-eddy simulations [96], eddy damped

quasi-normal Markovian simulations [97], and direct numerical simulations of the

quasi-classical turbulence observed in helium II [98–100]. Recently, shell-model

versions of the HVBK model have been used to study the statistical properties of

3D superfluid turbulence [101–103].

1.5 Outline of chapters

In this thesis we study a variety of problems in superfluid turbulence, principally

in two dimensions. A summary of the main results of our studies is given below;

we indicate the Chapters in which we present these.

In Chapter 2, we present a systematic, direct numerical simulation of the two-

dimensional, Fourier-truncated, Gross-Pitaevskii equation to study the turbulent

evolutions of its solutions for a variety of initial conditions and a wide range of pa-

rameters. We find that the time evolution of this system can be classified into four

regimes with qualitatively different statistical properties. First, there are tran-

sients that depend on the initial conditions. In the second regime, power- law scal-

ing regions, in the energy and the occupation-number spectra, appear and start

to develop; the exponents of these power laws and the extents of the scaling re-

gions change with time and depend on the initial condition. In the third regime,

the spectra drop rapidly for modes with wave numbers k > kc and partial ther-

malization takes place for modes with k < kc ; the self-truncation wave number

kc(t) depends on the initial conditions and it grows either as a power of t or as

log t. Finally, in the fourth regime, complete thermalization is achieved and, if we

account for finite-size effects carefully, correlation functions and spectra are con-

sistent with their nontrivial Berezinskii-Kosterlitz-Thouless forms. Our work is a

natural generalization of recent studies of thermalization in the Euler and other

hydrodynamical equations; it combines ideas from fluid dynamics and turbulence,

on the one hand, and equilibrium and nonequilibrium statistical mechanics on the

other.

In Chapter 3, we present the first calculation of the mutual-friction coefficients

α and α′ (which are parameters in the Hall-Vinen-Bekharevich-Khalatnikov two-

fluid model that we study in chapter 5) as a function of temperature in a ho-
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mogeneous bose gas in two-dimensions by using the Galerkin-truncated Gross-

Pitaevskii equation, with very special initial conditions, which we obtain by using

the advective, real, Ginzburg-Landau equation (ARGLE) and an equilibration pro-

cedure that uses a stochastic Ginzburg-Landau equation (SGLE). We also calculate

the normal-fluid density as a function of temperature.

In Chapter 4, we elucidate the interplay of particles and fields in superfluids, in

both simple and turbulent flows. We carry out extensive direct numerical simula-

tions (DNSs) of this interplay for the two-dimensional (2D) Gross-Pitaevskii (GP)

equation. We obtain the following results: (1) the motion of a particle can be chaotic

even if the superfluid shows no sign of turbulence; (2) vortex motion depends sen-

sitively on particle charateristics; (3) there is an effective, superfluid-mediated,

attractive interaction between particles; (4) we introduce a short-range repulsion

between particles, with range rSR, and study two- and many-particle collisions; in

the case of two-particle, head-on collisions, we find that, at low values of rSR, the

particle collisions are inelastic with coefficient of restitution e = 0; and, as we in-

crease rSR, e becomes nonzero at a critical point, and finally attains values close

to 1; (5) assemblies of particles and vortices show rich, turbulent, spatio-temporal

evolution.

In Chapter 5, we present results from our direct numerical simulations (DNSs)

of the Hall-Vinen-Bekharevich-Khalatnikov (HVBK) two-fluid model in two dimen-

sions. We have designed these DNSs to study the statistical properties of inverse

and forward cascades in the HVBK model. We obtain several interesting results

that have not been anticipated hitherto: (1) Both normal-fluid and superfluid en-

ergy spectra, En(k) and Es(k), respectively, show inverse- and forward-cascade

regimes; the former is characterized by a power law Es(k) ∼ En(k) ∼ k−α whose

exponent is consistent with α ≃ 5/3. (2) The forward-cascade power law depends

on (a) the friction coefficient, as in 2D fluid turbulence, and, in addition, on (b)

the coefficient B of mutual friction, which couples normal and superfluid compo-

nents. (3) As B increases, the normal and superfluid velocities, un and us, re-

spectively, get locked to each other, and, therefore, Es(k) ≃ En(k), especially in

the inverse-cascade regime. (4) We quantify this locking tendency by calculating

the probability distribution functions (PDFs) P(cos(θ)) and P(γ), where the angle

θ ≡ (un · us)/(|un||us|) and the amplitude ratio γ = |un|/|us|; the former has a peak

at cos(θ) = 1; and the latter exhibits a peak at γ = 1 and power-law tails on both

sides of this peak. (4) This locking increases as we increase B, but the power-law

exponents for the tails of P(γ) are universal, in so far as they do not depend on

B, ρn/ρ, and the details of the energy-injection method. (5) We characterize the
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energy and enstrophy cascades by computing the energy and enstrophy fluxes and

the mutual-friction transfer functions for all wave-number scales k.

In Chapter 6, we examine the multiscaling of structure functions in three-dimensional

superfluid turbulence by using a shell-model for the three-dimensional HVBK equa-

tions. Our HVBK shell model is based on the GOY shell model. In particular,

we examine the dependence of multiscaling on the normal-fluid fraction and the

mutual-friction coefficients.
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Chapter 2

Turbulence in the two-dimensional Fourier-truncated

Gross-Pitaevskii equation

This Chapter is based on our published work [1].

In this Chapetr we undertake a systematic, direct numerical simulation (DNS)

of the two-dimensional, Fourier-truncated, Gross-Pitaevskii equation to study the

turbulent evolutions of its solutions for a variety of initial conditions and a wide

range of parameters. We find that the time evolution of this system can be classified

into four regimes with qualitatively different statistical properties. First, there are

transients that depend on the initial conditions. In the second regime, power-law

scaling regions, in the energy and the occupation-number spectra, appear and start

to develop; the exponents of these power-laws and the extents of the scaling regions

change with time and depended on the initial condition. In the third regime, the

spectra drop rapidly for modes with wave numbers k > kc and partial thermal-

ization takes place for modes with k < kc; the self-truncation wave-number kc(t)

depends on the initial conditions and it grows either as a power of t or as log t. Fi-

nally, in the fourth regime, complete-thermalization is achieved and, if we account

for finite-size effects carefully, correlation functions and spectra are consistent with

their nontrivial Berezinskii-Kosterlitz-Thouless forms. Our work is a natural gener-

alisation of recent studies of thermalization in the Euler and other hydrodynamical

equations; it combines ideas from fluid dynamics and turbulence, on the one hand,

and equilibrium and nonequilibrium statistical mechanics on the other.

2.1 Introduction

The elucidation of the nature of superfluid turbulence, which began with the pi-

oneering studies of Feynman [2] and of Vinen and Hall [3–7], has continued to

engage the attention of experimentalists, theoreticians, and numerical simulators

[8–14] and has experienced a renaissance over the past few years. Experimental

50
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systems, in which such turbulence is studied, include the bosonic superfluid 4He,

its fermionic counterpart 3He, and Bose-Einstein condensates (BECs) of cold atoms

in traps and their optical analogues; for representative studies we refer the reader

to [15–24]. Theoretical and numerical studies have used a variety of models to

study superfluid turbulence; these include the two-fluid model [25,26], Biot-Savart-

type models with [27,28] or without [29,30] the local-induction approximation, and

the Gross-Pitaevskii (GP) or nonlinear Schrödinger (NLS) equations [31,32]. These

models have been studied by a combination of theoretical methods, such as wave-

turbulence theory [31–34], and numerical simulations [35–41]. Most of these stud-

ies have been carried out in three dimensions (3D); numerical simulations of two-

dimensional (2D) models for superfluid turbulence have been increasing steadily

over the past few years [42–45]. Here we undertake a systematic direct numer-

ical simulation (DNS) of the dissipationless, unforced, Fourier-truncated, 2D, GP

equation with a view to identifying what, if any, features of the turbulent evolution

of the solutions of this equation are universal, i.e., they do not depend on initial

conditions. Some, though not all, parts of our results are contained in earlier sim-

ulations [42–49]. The perspective of our study is different from earlier studies of

the 2D GP equation; in particular, we elucidate in detail the dynamical evolution of

this system and examine the various stages of its thermalization; in this sense our

work is akin to recent studies of thermalization in Euler and other hydrodynamical

equations [50–52], which combine ideas from fluid dynamics and turbulence, on the

one hand, and equilibrium and nonequilibrium statistical mechanics on the other.

Recent studies [50–52] of the dynamics of spectrally truncated, 3D, incompress-

ible Euler flows and related systems have shown that the inviscid and conserva-

tive Euler equation, with a high-wave-number spectral truncation, has long-lasting

transients that behave just as those of the 3D dissipative Navier-Stokes equation,

with generalized dissipation. This is so because the thermalized modes, between

some transition wave number and the maximum wave number, act as an effective

microworld that provides a viscosity to the modes, with wave numbers below the

transition wave number; a similar study for the 3D GP equation has been carried

out by Krstulovic and Brachet [39,53].

In a recent review on Quantum Turbulence, Paoletti and Lathrop [13] write,

“Despite the abundant examples of turbulence, there is no consensus definition of

the term. Here, we define turbulence as a dynamic field that is spatially complex,

aperiodic in time, and involves processes spanning several orders of magnitude in

spatial extent and temporal frequency.” It is in this sense that we use the term
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turbulence in our study of the dynamical evolution of solutions of the 2D, Fourier-

truncated Gross-Pitaevskii equation.

It is useful to begin with a qualitative overview of our principal results. We

find that the dynamical evolution of the dissipationless, unforced, 2D, Fourier-

truncated GP equation can be classified, roughly, into the following four regimes,

which have qualitatively different statistical properties: (1) The first is the region

of initial transients; this depends on the initial conditions. (2) This is followed by

the second regime, in which we see the onset of thermalization; here the energy

and occupation-number spectra begin to show power-law-scaling behaviours, but

the power-law exponent and the extents of the scaling regions change with time

and depend on the initial conditions. (3) In the third regime, which we call the

region of partial thermalization, these spectra show clear, power-law, scaling be-

haviours, with a power that is independent of the initial conditions, and, at large

wave vectors, an initial-condition-dependent, self-truncation regime, where spectra

drop rapidly; (4) finally, in the fourth regime, the system thermalizes completely

and exhibits correlation functions that are consistent with the predictions of the

Berezinskii-Kosterlitz-Thouless (BKT) theory [48,54–56], if the simulation domain

and simulation time are large enough. Although some of these regimes have been

seen in some earlier numerical studies of the 2D GP equation, we are not aware

of any study that has systematized the study of these four dynamical regimes.

In particular, regime 3, which shows partial thermalization and self-truncation in

spectra, has not been identified in the 2D, Fourier-truncated, GP equation, even

though its analogue has been investigated in the 3D case [33,39,53].

The remaining part of this chapter is organised as follows. In Sec. 2.2, we de-

scribe the 2D, GP equation and the different statistical measures we use to charac-

terize turbulence in the Fourier-truncated, 2D, GP equation (Sec. 2.2.1); the details

of our numerical methods and initial conditions are given in Sec. 2.2.2. In Sec. 2.3,

we present our results; these are described in the four Sec. 2.3.1-2.3.4 that are

devoted, respectively, to the following: (a) the temporal evolution of the energy

components, velocity-component probability distribution functions (PDFs), and the

population N0 in the zero-wave-number mode; (b) the statistical characterization of

the first two regimes of the dynamical evolution (by using various energy and the

occupation-number spectra for different initial conditions); (c) a similar statistical

characterization, as in Sec. 2.3.2, but for the regime with partial thermalization,

and the study of the nature of the growth of the self-truncation region; (d) the

final, completely thermalized state of the Fourier-truncated, 2D, GP equation. Sec-

tion 2.4 contains our conclusions. A note on the units used for the GP equation and
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the details of some analytical calculations are presented in Appendix A.1 and A.2,

respectively.

2.2 Model, Initial Conditions, and Numerical Methods

In this Section, we describe the 2D, GP equation. We define all the statistical mea-

sures that we use to characterize the time evolution of this equation, given the

three types of initial conditions that we describe below. We also describe the nu-

merical methods, and computational procedures that we use to solve this equation.

2.2.1 The Gross-Pitaevskii Equation

The GP equation, which describes the dynamical evolution of the wave function ψ

of a weakly interacting 2D Bose gas at low temperatures, is

i
∂ψ(x, t)

∂t
= −∇2ψ(x, t) + g|ψ|2ψ(x, t); (2.1)

ψ(x, t) is a complex, classical field and g is the effective interaction strength [57,58].

This equation conserves the total energy

E =

∫

A

[
|∇ψ|2 + 1

2
g|ψ|4

]
d2x (2.2)

and the total number of particles

N =

∫

A
|ψ|2d2x, (2.3)

where A = L2 is the area of our 2D, periodic, computational domain of side L. From

Eq. (2.1) we obtain the continuity equation

∂ρ

∂t
+∇ · (ρv) = 0, (2.4)

where ρ = |ψ|2 is interpreted as the particle density and the velocity is

v(x, t) =
ψ∗∇ψ − ψ∇ψ∗

i|ψ|2 . (2.5)

We can use the Madelung transformation ψ(x, t) =
√
ρeiθ(x,t), where θ(x, t) is the

phase of ψ(x, t), to write v(x, t) = 2∇θ(x, t), whence we get [36]

E =

∫

A

[
1

4
ρv2 +

1

2
g|ψ|4 + [∇ρ1/2]2

]
d2x = Ekin + Eint + Eq, (2.6)
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where the kinetic, interaction, and quantum-pressure energies are defined, respec-

tively, as

Ekin =
1

4

∫

A
|√ρv|2d2x, (2.7a)

Eint =
1

2

∫

A
g|ψ|4d2x, (2.7b)

Eq =

∫

A
|∇ρ1/2|2d2x. (2.7c)

We separate the compressible (superscript c) and the incompressible (superscript

i) parts of the kinetic energy by making use of the decomposition

ρ1/2v = (ρ1/2v)i + (ρ1/2v)c, (2.8)

where ∇ · (ρ1/2v)i = 0 and ∇× (ρ1/2v)c = 0, whence we obtain the following:

Ei
kin =

1

4

∫

A
|(√ρv)i|2d2x; (2.9a)

Ec
kin =

1

4

∫

A
|(√ρv)c|2d2x. (2.9b)

The spectra for these energies are defined as follows:

Ei
kin =

1

4

∫
| ̂(ρ1/2v)i|2d2k ≡

∫
Ei

kin(k)dk; (2.10)

Ec
kin =

1

4

∫
| ̂(ρ1/2v)c|2d2k ≡

∫
Ec

kin(k)dk; (2.11)

Eint =

∫
| ̂√

g/2|ψ|2|2d2k ≡
∫
Eint(k)dk; (2.12)

and

Eq =

∫
|∇̂ρ1/2|2d2k ≡

∫
Eq(k)dk; (2.13)

furthermore, we define an occupation-number spectrum n(k) via

N =

∫
|ψ̂|2d2k ≡

∫
n(k)dk; (2.14)

here we denote the Fourier transform of A(x) by Â; and, for notational convenience,

we do not show explicitly the dependence of these spectra on time t. In any com-

putational study, we must limit the number of Fourier modes that we use in our

study of the GP equation; we refer to such a GP equation as a Fourier-truncated

GP equation (cf. [50, 51] for studies of the Fourier- or Galerkin-truncated Euler

equation).



2.2. Model, Initial Conditions, and Numerical Methods 55

The Bogoluibov dispersion relation ωB(k) is obtained by linearizing Eq. (2.1)

around a constant ψ. For a total number of particles Eq. (2.3) N = 1, it is

ωB(k) = kc

√
1 +

ξ2k2

2
, (2.15)

where the sound velocity is c =
√
2g
L

and the coherence length is

ξ =
L√
g
. (2.16)

We investigate thermalization in the 2D GP equation, so it is useful to recall that

a uniform, interacting, 2D Bose gas has a high-temperature disordered phase and

a low-temperature, Berezenskii-Kosterlitz-Thouless (BKT) phase [59–62], which

shows quasi-long-range order with an algebraic decay of the spatial correlation

function [54]

c(r) = 〈
[
e−iθ(x) − 〈e−iθ(x)〉

] [
eiθ(x+r) − 〈eiθ(x+r)〉

)
]〉; (2.17)

for temperatures T below the transition temperature TBKT (or energy EBKT in the

microcanonical ensemble),

c(r) ∼ r−η, (2.18)

where r ≡ |r| and the critical exponent η < 0.25 for T < TBKT ; and η = 0.25 at

T = TBKT [55]. The BKT phase shows bound vortex-antivortex pairs; these unbind

above TBKT , so

c(r) ∼ e−r/ℓ, (2.19)

in the disordered phase, with ℓ the correlation length.

2.2.2 Numerical Methods and Initial Conditions

To perform a systematic, pseudospectral, direct numerical simulation (DNS) of the

spatiotemporal evolution of the 2D, Fourier-truncated, GP equation, we have de-

veloped a parallel, MPI code in which we discretize ψ(x, t) on a square simulation

domain of side L = 32 with N2
c collocation points. We use periodic boundary con-

ditions in both spatial directions, because we study homogeneous, isotropic turbu-

lence in this 2D system, and a fourth-order, Runge-Kutta scheme, with time step

∆t, for time marching. We evaluate the linear term in Eq. (2.1) in Fourier space

and the nonlinear term in physical space; for the Fourier-transform operations we

use the FFTW library [63]. Thus, the maximum wave number kmax = (Nc/2)∆k,

where ∆k = 2π/L, and

ξkmax =
πNc√
g
. (2.20)
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We have checked that, for the quantities we calculate, dealiasing of our pseudospec-

tral code does not change our results substantially; here we present the results

from our pseudospectral simulations that do not use dealiasing. For a general ref-

erence on numerical methods for quantum fluids, see [64].

To initiate turbulence in the 2D GP equation we use three types of initial condi-

tions IC1 [42], IC2, and IC3 [53], always normalized to correspond to a total number

of particles Eq. (2.3) N = 1. The first of these is best represented in Fourier space

as follows:

ψ̂(k, t = 0) =
1√
π1/2σ

exp

(
−(k − k0)

2

2σ2

)
exp (iΘ(kx, ky)), (2.21)

where k =
√
k2x + k2y, Θ(kx, ky) are random numbers distributed uniformly on the

interval
[
0, 2π

]
; k0 = N0∆k and σ = B∆k, where the integer N0 controls the spatial

scale at which energy is injected into the system, and the real number B specifies

the Fourier-space width of ψ̂ at time t = 0. The initial condition IC2 is like IC1 but,

in addition, it has a finite initial condensate population N i
0 =| ψ̂(k = 0, t) |2 (∆k)2

at time t = 0. Note the study of [42] uses a hyper-viscosity term ν(−∇2)nψ, which

is absent in our study; such hyperviscosity terms can modify energy spectra in

important ways, as has been discussed in the context of turbulence in the Navier-

Stokes equation in [51,65].

We obtain the initial condition IC3 by solving the 2D, stochastic, Ginzburg-

Landau equation (SGLE), which follows from the free-energy functional

F =

∫

A
d2x

(
|∇ψ|2 − µ|ψ|2 + 1

2
g|ψ|4

)
, (2.22)

where µ is the chemical potential1. The SGLE is

∂ψ

∂t
= − δF

δψ∗ + ζ(x, t), (2.23)

where ζ is a zero-mean, Gaussian white noise with

〈ζ(x, t)ζ∗(x′, t′)〉 = Dδ(x− x′)δ(t− t′), (2.24)

whereD = 2T , in accordance with the fluctuation-dissipation theorem [66], T is the

temperature, and δ the Dirac delta function. Finally, the SGLE Eq. (2.23) becomes

∂ψ

∂t
= ∇2ψ − µψ + g|ψ|2ψ + ζ, (2.25)

which we solve along with the following, ad-hoc equation

dµ

dt
= −νNA (N −Nav) , (2.26)

1Recall that the SGLE can be thought of as an imaginary-time GP equation with external, additive noise (see, e.g.

Ref. [39])
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to control the number of particles N ; the parameter Nav controls the mean value of

N ; and νN governs the rate at which the SGLE equilibrates. We solve the SGLE by

using a pseudospectral method, similar to the one described above for the 2D, GP

equation, with periodic boundary conditions in space, an implicit-Euler scheme,

with time step ∆t, for time marching and the method of Ref. [67] (see page 25 of

this reference).

The motivation for choosing the parameters for our runs is to explore the initial-

condition dependence of our results by varying the energy, the value k0 of the wave

number at which the initial energy is concentrated, the spread σ of the energy

about k0 at time t = 0, the interaction strength g, and the presence of the initial

condensate density N i
0. For our systematic study, we have performed numerous

runs; these are listed in Table 2.1; the parameters for these runs have been chosen

to highlight one type of behaviour or another; e.g., the time dependence of the

self-truncation wave number kc (see below) changes dramatically as we change

the parameters of our runs (see Table 2.2); this exploration of parameter space is

necessary in order to gain a comprehensive understanding of the dynamics of the

2D, Fourier-truncated, Gross-Pitaevskii equation.

Note that we introduce the initial conditions IC2 and IC3 to obtain the relevant

behaviour in a shorter time span than is possible with IC1. The initial condition

IC1 has zero initial condensate population N i
0 and, therefore, several vortices; its

dynamics involves a build up of the condensate population; this takes a long time.

The initial condition IC2 is similar to IC1 but with an initial condensate population

N i
0 > 0; thus, condensate build up is bypassed. In the same manner, IC3 allows us

to study the late stages of the self-truncation regime.

2.3 Results

We first present the time evolution of the different energies, the probability distri-

bution functions (PDFs) of the velocity components, and the population N0 in the

zero-wave-number mode. We then give a detailed statistical characterization of the

temporal evolution of the Fourier-truncated, 2D, GP equation in the four regimes

mentioned in the Introduction (Sec. 2.1).

2.3.1 Evolution of energies, velocity PDFs, and the zero-wave-number

population

We show the early stages of the time evolution of the energies Ei
kin, Ec

kin, Eint, and

Eq, from our DNS runs A1-A4, B1, and C6 in Fig. 2.1. The runs A1-A4 use initial con-
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Nc k0(×∆k) σ(×∆k) g N i
0

√
D(×10−3) kinc E

A1 1024 5 2 1000 − − − 2.120

A2 1024 5 2 2000 − − − 3.045

A3 1024 5 2 5000 − − − 5.82

A4 1024 35 5 1000 − − − 49.69

A5 512 5 2 1000 − − − 2.15

A6 256 5 2 1000 − − − 2.07

A7 128 5 2 1000 − − − 2.1

A8 64 5 2 1000 − − − 2.2

A9 256 5 2 2000 − − − 2.94

A10 256 5 2 5000 − − − 5.57

A11 256 15 2 1000 − − − 9.86

A12 256 15 2 2000 − − − 10.82

A13 256 15 2 5000 − − − 13.68

B1 128 5 1 10000 0.95 − − 5.44

B2 128 5 1 1000 0.95 − − 0.59

C1 256 − − 5000 − 8 6 2.536

C2 256 − − 1000 − 8 6 0.583

C3 256 − − 1000 − 10 6 0.637

C4 256 − − 1000 − 8 9 0.7

C5 256 − − 1000 − 8 15 1.085

C6 256 − − 1000 − 8 20 1.557

Table 2.1: Parameters for our DNS runs A1-A13, B1-B2, and C1-C6: N2
c is the number of collocation points, k0 is

the energy-injection scale, σ is the Fourier-space width of ψ̂ at t = 0; g is the effective interaction strength; N i
0

is the initial condensate population; D and kinc are respectively, the variance of the white-noise and the initial

value of the truncation wave number, which we use in the initial conditions of type IC3; E is the total energy;

we use a square simulation domain of area A = L2; we choose L = 32.
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ditions of type IC1, in which Ei
kin is a significant fraction of the total initial energy;

the runs B1 and C6 start with initial configurations of type IC2 and IC3, respectively,

in which Ei
kin is negligibly small at t = 0. The transient nature of the early stages

of the dynamical evolution of the dissipationless, unforced, 2D, GP equation is ev-

ident from Fig. 2.1, in which we observe a rapid conversion of Ei
kin into the other

three components, with a significant fraction being transferred to Ec
kin; moreover,

the transient stage depends on the initial conditions, as we describe below. Fig-

ures 2.1 (a)-(c), show comparisons of the temporal evolution of the energies, from

the runs A1-A3; we observe, in particular, that the conversion of Ei
kin into the other

energy components is accelerated as g increases from 1000 to 5000 (cf. [43]); and

there is a corresponding acceleration in the approach to thermalization. The time

evolution of the incompressible kinetic energy follows that of the total number of

vortices Nv; see, e.g., [68], and the figure F1, which we have included in the sup-

plementary material. Moreover, the larger the value of Ei
kin the larger is the time

required for thermalization, as we can see by comparing Figs. 2.1 (a) and (d), for

the runs A1 and A4, respectively; the run A4 starts with a high value of Ei
kin(t = 0)

because of a large number of vortices and anti-vortices, so it takes a long time to

thermalize; indeed, if the spatial resolution of our DNS is very high, the computa-

tional cost of achieving a statistically steady state is prohibitively high for initial

conditions A1-A4. In contrast, the runs B1 and C6 have negligibly small values of

Ei
kin(t = 0) to begin with (Figs. 2.1 (e) and (f), respectively); and Ei

kin(t) remains

close to zero throughout the dynamical evolution here. For run B1, both Ec
kin and

Eq start from values close to zero, grow at the cost of Eint, and finally saturate

to small, statistically steady values. For run C6, there are hardly any vortices in

the initial configuration, so the energies start fluctuating about their statistically

steady values very rapidly.

In Fig. 2.2 we plot, at three instants of time, the PDFs of vx and vy, the Carte-

sian components of the velocity, for our DNS runs A1, B1, and C6, which correspond,

respectively, to initial conditions of types IC1, IC2, and IC3. For the run A1, these

PDFs, in Figs. 2.2 (a)-(c), show a crossover from a distribution with power-law tails

to one that is Gaussian; the right and left tails of the PDFs in Fig. 2.2 (a) can be fit

to the form ∼ v−γ
i , with γ ≃ 3.2, and i = x or y (we show fits only for i = x). Such

power-law tails in velocity-component PDFs have been seen in experiments [69]

and some numerical studies [40,46,70,71]. However, it has not been noted hitherto

that, for turbulence in the Fourier-truncated, 2D, GP equation with low-energy ini-

tial conditions, such PDFs evolve, as t increases, from PDFs with power-law tails

(Fig. 2.2 (a) for run A1), to ones with a Gaussian form near the mean, followed
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Figure 2.1: Plots versus time t of the four components of the total energy Ei
kin, Ec

kin, Eint, and Eq, during the

initial stages of evolution, from our DNS runs (a) A1, (b) A2 (c) A3, (d) A4, (e) B1, and (f) C6 (see Table 2.1).

by broad tails (Fig. 2.2 (b) for run A1), and then to more-or-less Gaussian PDFs

(Fig. 2.2 (c) for run A1), but with tails that can be fit to an exponential form. This

evolution towards Gaussian PDFs is associated with the annihilation of vortices

and anti-vortices. The Video M1 in the Supplementary Material shows the tempo-

ral evolution of this PDF in the left panel and the spatiotemporal evolution of the

pseudocolor plot of the vorticity in the right panel. The analogues of Figs. 2.2(a)-(c)

for runs B1 and C1, both of which have a negligibly small value of Ei
kin at t = 0, are

given, respectively, in Figs. 2.2(d)-(f) and Figs. 2.2(g)-(i).

To calculate the velocity PDFs, during the various stages of the evolution of

the system, we obtain the velocity at every grid point in our simulation domain;

thus, we make these numerical measurements at a length scale that is always less

than the inter-vortex separation. The power-law tails, which we observe in the

velocity PDFs for our DNS run A1, arise because of the singular nature of quantum

vortices [13]; and the cross-over from such power-law tails, in the initial stages of

evolution, to the more-or-less Gaussian PDFs, in the partially thermalized state,

arises because of the depletion of the vortex density with time. Thus, our results

complement those in [72] insofar as the cross-over from power-law to Gaussian

tails occurs as our system evolves in time and not as we change the length scale of

our measurement as in [72].

We turn now to the time evolution of the population N0(t), in the k = 0 mode [37,

41, 73], and its dependence on the initial conditions. In Fig. 2.3 (a) we plot N0
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Figure 2.2: Semilog (base 10) plots of the PDFs of the x (red circles) and y (green squares) components of

the velocity from our DNS runs: (a)-(c) A1, (d)-(f) B1, and (g)-(i) C6, corresponding to each of the three types of

initial conditions IC1, IC2, and IC3, respectively. The complete time evolution of the PDFs (a)-(c) for the run A1

is illustrated in the top-left panel of the Video M1 (supplementary material). The blue-dashed lines in (b)-(i)

indicate fits to Gaussian PDFs; the dashed lines in (a) indicate power-law fits to the left (blue-dashed line) and

right (orange-dashed line) tails of the PDFs (see text).
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versus t for the runs A1-A4 (red, blue, green, and brown curves, respectively), which

use initial configurations of type IC1; these figures show that N0(t) increases with

t, on average, and depends on E, g, k0, and σ. For the runs A1 and A2 (red and

blue curves in Fig. 2.3 (a)), N0(t) approaches a saturation value for the time scales

probed by our simulations; Fig. 2.3 (a) also shows that, as we increase g (red, blue,

and green lines in Fig. 2.3 (a)), the fluctuations in N0 are enhanced and its large-t

value, which it seems to approach asymptotically, diminishes. By comparing the

runs A1 and A4 (red and brown lines in Fig. 2.3 (a)), we see that the latter has a

higher value of E than the former, because both k0 and σ are smaller for A1 than

for A4; thus, N0(t) grows more slowly in A4 than in A1; and, after an equal amount

of simulation time, its value in A4 is nearly an order of magnitude lower than in

A1; the former shows large fluctuations in N0(t) and no sign of saturation. The

run B1 (Fig. 2.3 (e)) uses an initial configuration of type IC2, with a large value of

N0(t = 0) = 0.95; in this case, after a period of initial transients, N0(t) → 0.98 over

our simulation time. The run C6 (Fig. 2.3 (f)) uses an initial condition of type IC3;

here N0(t) fluctuates slightly but remains close to its initial value (cf. [41,73]).

To study the dependence of N0(t) on the number of collocation points N2
c , we

evolve the initial configuration of A1 for Nc = 512 (run A5), Nc = 256 (run A6),

Nc = 128 (run A7), and Nc = 64 (run A8). Figure 2.3 (g) shows plots of N0(t) versus t

for these five runs; clearly, the initial evolution of N0(t) depends significantly on Nc;

however, the large-t values of N0(t), on the time scales of our runs, are comparable

(≃ 0.9) for the runs with Nc = 128 (run A7), Nc = 256 (run A6), and Nc = 1024

(run A1). In contrast, the saturation value for the run with Nc = 64 (run A8) is

≃ 0.8. For the run A5 (Nc = 512), N0(t) shows large fluctuations and no sign of

saturation over the time scale that we have covered; this suggests that N0(t) also

depends on the realisation of the random phases Θ(kx, ky) in Eq. (2.21). These plots

of N0(t) illustrate that complete thermalization proceeds very slowly for N0; in the

completely thermalized state of the Fourier-truncated, 2D, GP system, N0 must

vanish in the thermodynamic limit by virtue of the Hohenberg-Mermin-Wagner

theorem [59, 60]; however, it is not easy to realize this limit in finite-size systems

and with the limited run times that are dictated by computational resources. We

discuss these issues again in Sec. 2.3.4 and also refer the reader to [73,74].

2.3.2 Initial transients and the onset of thermalization

The initial stages of the evolution of energy spectra for the Fourier-truncated, 2D,

GP equations are qualitatively different for initial conditions of types IC1, IC2, and

IC3. The first type begins with a sizeable incompressible kinetic energy spectrum
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Figure 2.3: Plots versus time t of the population N0, in the zero-wave-number mode, from our DNS runs (a)

A1-A4 (initial condition of type IC1), (b) B1 (initial condition of type IC2), (c) C6 (initial condition of type IC3),

and (d) A1 and A5-A8, for five values for the number of collocation points N2
c , namely, 10242 , 5122, 2562, 1282,

and 642.
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Ei
kin(k); and the initial transients are associated with the annihilation and creation

of vortex-antivortex pairs, the associated depletion of Ei
kin(k), and the growth of the

other energy components [42]. In contrast, runs with initial conditions of types IC2

and IC3 start with a very small incompressible-energy component, therefore, even

the early stages of their dynamical evolution are akin to the late stages of the

dynamical evolution with initial conditions of type IC1. In Figs. 2.4 (a)-(d) we show

the time evolution of the spectra Ei
kin(k), for the runs A1, A2, A3, and A4, to ascertain

the presence of scaling behaviour, if any. We find that, in the low-k region, Ei
kin(k)

lacks a well-defined scaling region (unlike in [43]); indeed, this region depends

on the initial configuration, changes continuously with time, and, in particular, a

k−5/3 scaling region is tenable (a) over a range of wave numbers that is very tiny

and (b) over a fleetingly short interval of time (around t = 50 for the run A1). At

large wave numbers, Ei
kin(k) ∼ k−3, during the initial stages of evolution, because

of the presence of the vortices [45]; this power-law form holds over the same time

scales for which the PDF P (vx/σvx) ∼ v−γ
x (Figs. 2.2 (a)-(b)).

It is useful to define a wave number khd = 2π/δ based on the average vortex

separation δ = λ−1/2, where λ = Nv/A is the vortex density. We calculate khd and

plot it versus time t, for the DNS runs A1-A3, in figure F2 in the supplementary

material. In our simulations, only a small number of modes have k ≤ khd, especially

for our DNS runs A1-A3 (see Fig. 2.4 in which we have plotted the Ei
kin(k)). In our

study, given the systems sizes and initial conditions we use, the system evolves

towards states in which the vortex density is low.

The initial transients described above are followed by a regime in which the en-

ergy and occupation-number spectra begin to show power-law-scaling behaviours,

but the power-law exponent and the extent of the scaling region change with time

and depend on the initial conditions; we regard this as the onset of thermalization,

which is shown in Figs. 2.5 and 2.6, where we illustrate the time evolution of Ec
kin.

Figure 2.5 (a) shows Ec
kin(k) for the run A1; we begin to see a power-law region

here with Ec
kin(k) ∼ k, on the low-k side of the peak after which the spectrum falls

steeply. A similar Ec
kin(k) ∼ k behaviour starts to emerge in the region k . kmax for

the run B1 (Fig. 2.5 (g)). In this onset-of-thermalization regime, we also see the de-

velopment of the following power laws: Eint(k)+Eq(k) ∼ k (Fig. 2.7) and n(k) ∼ 1/k

(Fig. 2.8).
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Figure 2.4: Log-log (base 10) plots of the spectra Ei
kin(k) from our DNS runs (a) A1, (b) A2, (c) A3, and (d) A4 at

different times t (indicated by curves of different colours); a k−3 power law is shown by orange-dashed lines.

The complete time evolution of the spectra in (a), (b), (c), and (d) is illustrated in the Video M2 (supplementary

material).
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Figure 2.5: Log-log (base 10) plots of the spectra Ec
kin(k) from our DNS runs (a)-(c) A1, (d)-(f) A4, and (g)-(i) B1

at different times t (indicated by curves of different colours); a k power law is shown by orange-dashed lines.
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Figure 2.6: Log-log (base 10) plots of the spectra Ec
kin(k) from our DNS runs (a)-(c) A7 and (d)-(f) B2 at different

times t (indicated by curves of different colours); a k power law is shown by orange-dashed lines.

2.3.3 Partial thermalization and self-truncation

Partial thermalization

In the third stage of the dynamical evolution of the 2D, Fourier-truncated, GP equa-

tion, which we refer to as the partial-thermalization stage, well-defined, power-law-

scaling behaviours appear in energy and occupation-number spectra, with expo-

nents that are independent of the initial conditions as illustrated by the compressible-

kinetic-energy spectra in Figs. 2.5 (b), (c) (e), (f), and 2.6 (b) for initial conditions

of type IC1, and Figs. 2.5 (h) and 2.6 (e), and (f), for initial conditions of type IC2.

It is important to distinguish between (I) spectra that fall steeply at large values

of k, e.g., the spectra in Figs. 2.5 (b), (c) (e), (f), and 2.6 (e) and (f), and (II) spec-

tra that increase all the way to kmax, e.g., the spectra in Figs. 2.5 (h) and 2.6 (b)

and (c). In case (I), we have spectral convergence to the 2D GP partial differential

equation (PDE); in case (II), the effects of Fourier truncation are so pronounced

that our truncated 2D, GP system does not provide a good representation of the 2D,

GP PDE. As we show below, case (I) can be further subdivided into (A) a subclass

in which the maximum, at k = kc in Ekin(k) = (Ec
kin(k) + Ei

kin(k)), referred to as

the self-truncation wave number [53], moves out to kmax as a power of t and (B) a

subclass in which kc moves out to kmax at a rate that is slower than a power of t.

Figures 2.5 (g)-(i), from the run B1, show how Ec
kin(k) evolves as the spectral

convergence to the GP PDE is lost in case (II); note that the scaling region with
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Figure 2.7: Log-log (base 10) plots of the spectra Eint(k) + Eq(k) from our DNS runs (a)-(c) A1, (d)-(f) A4, and

(g)-(i) B1 at different times t (indicated by curves of different colours); a k power law is shown by orange-dashed

lines.
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Figure 2.8: Log-log (base 10) plots of the spectra n(k) from our DNS runs (a)-(c) A1, (d)-(f) A4, and (g)-(i) B1 at

different times t (indicated by curves of different colours); a k−1 power law is shown by orange-dashed lines.

The total number of particles N = 1 (see Eq. (2.14)) and the area A = 322 of the simulation domain is the same

for the DNS runs A1, A4 and B1; and N is conserved during the time evolution of the system.
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Ec
kin ∼ k sets in at high wave numbers close to kmax and then extends to the low-

wave-number regime. For case (IA) analogous plots of Ec
kin(k) are given in, e.g.,

Figs. 2.6 (a)-(c). We give plots for case (IB) in the next subsection, where we study

in detail the time dependence of kc. Illustrative plots of the spectra (Ei(k) + Eq(k))

and n(k) in this regime of partial thermalization are given in Figs. 2.7 and 2.8,

respectively.

Self-truncation

We now present a detailed characterization of the partial-thermalization regime,

when energy spectra display self-truncation at wave-numbers beyond kc(t), which

can be defined as follows:

kc =

√√√√2
∫ kmax

0
k2Ekin(k)dk∫ kmax

0
Ekin(k)dk

; (2.27)

as the system approaches complete thermalization, kc(t) → kmax. In particular, we

explore how the scaling ranges in energy spectra grow with t for different values

of g, with the initial configuration and number of collocation points Nc held fixed.

For an initial condition of type IC1, with k0 = 5∆k, σ = 2∆k, and Nc = 256, we

obtain the time evolution of energy spectra for g = 1000 (run A6), g = 2000 (run A9),

and g = 5000 (run A10) in Figs. 2.9 (a), (b), and (c), respectively, and their video

analogues (Videos M3 (panel V2) in the Supplementary Material). The larger the

value of g, the more rapid is the thermalization, and the consequent loss of spectral

convergence, as we can see by comparing the sky-blue (run A10), green (run A9), and

purple (run A6) spectra in Figs. 2.9 (a)-(c); run A6 loses spectral convergence around

t = 2500. We obtain the same qualitative g dependence, with k0 = 15∆k, σ = 2∆k,

and Nc = 256, for g = 1000, 2000, and 5000, i.e., runs A11, A12, and A13, respectively,

for which energy spectra are portrayed in Figs. 2.9 (d)-(f) and Video M3 (panel V3)

in the Supplementary Material.

In Figs. 2.9 (g)-(i) we explore the Nc dependence of the self-truncation of energy

spectra, for initial conditions, with k0 = 5∆k, σ = 2∆k, and g = 1000, and five

different values of Nc, namely, Nc = 1024 (run A1), 512(run A5), 256 (run A6), 128

(run A7), and 64 (run A8). We find, not surprisingly, that the lower the value of Nc

the more rapidly does the system lose spectral convergence.

Note the dual nature of solutions to the truncated GPE: in the early part of

the dynamical evolution of this system, which lasts only as long as spectral con-

vergence is ensured, the solutions approximate numerically genuine solutions of

the original PDE (i.e., the untruncated GPE). In subsequent evolution, when spec-
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tral convergence is lost, the truncated system evolves to a truncation-dependent

thermodynamic equilibrium, which we call “complete thermalisation”. These two

distinct aspects might appear, at first sight, to be mutually exclusive. Indeed, in

the first part of the evolution, the truncation wavenumber kmax has no effect (or a

vanishingly small one) on the solution, whereas, in the next part, the very existence

of the equilibrium needs the influence of kmax. However, Fig. 2.9 shows that, in a

regime, which we call “partial thermalization”, the system “self truncates” with a

physical cutoff at momentum kc < kmax. In this new regime the system is in a state

that both approximates a solution to the original PDE and can also be thought of as

a thermalized state with a slowly growing “self truncation” at wave number kc. We

show below that the self-truncation regime can last a long time when ξkc is large.

Initial conditions of type IC2 lead to energy spectra whose time evolution, and

their dependence on g and Nc, is similar to those that are obtained from initial

conditions of type IC1.

With initial conditions of types IC1 and IC2, we cannot control the initial value

kc(t = 0) ≡ kinc easily. However, initial conditions of type IC3, which we obtain

from the SGLE, allow us to control kinc and start, therefore, with initial spectra

that display partial thermalization for k < kinc [53] and a sharp fall thereafter.

In Fig. 2.10 we show the time evolution of Ec
kin(k) for such initial conditions from

runs C1-C6. For different representative values of kinc , g, and D, we now study the

time evolution of kc(t), which characterizes the growth of the partially thermalized

scaling region. Here too, as with initial conditions of types IC1 and IC2, if all

other parameters like kinc = 6.0 and D are held fixed, the speed of thermalization

increases with g (cf. Fig. 2.10 (a) for the run C1, with g = 5000, and Fig. 2.10 (b) for

the run C2, with g = 1000). For these runs C1-C6, the growth of the energy spectra,

in the region k > kinc , starts with the smoothening of the sharp cut-off at kinc ; the

higher the value of kinc , the slower is this growth (cf. Figs. 2.10 (b), (d), (e), and

(f) for runs C2, C4, C5, and C6, respectively). By contrast, an increase in D (or T )

in the SGLE, accelerates this growth (cf. Figs. 2.10 (b) and (c) for runs C2 and C3,

respectively).

The growth of kc(t) with t, illustrated in Fig. 2.11 (a), can be fit to the form

kc(t) ∼ tα; however, as we show below, α depends on the initial condition. We

obtain the exponent α either from slopes of log-log plots of (i) kc(t) versus t or (ii)

dkc/dt versus kc/kmax; we denote the values from procedures (i) and (ii) as α1 and α2,

respectively. Note that in (ii) we have a parametric plot [39,53], shown in Fig. 2.11

(b); this yields a straight-line scaling regime with slope χ and α2 = 1/(1 − χ). The

values of α1 and α2, listed in Table 2.2, show that α1 ≃ α2; the discrepancy between
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Figure 2.9: Log-log (base 10) plots of the spectra Ekin(k) from our DNS runs (a)-(c) A6, A9, and A10 (k0 = 5∆k

and σ = 2∆k), (d)-(f) A11, A12 and A13 (k0 = 15∆k and σ = 2∆), and (g)-(i) A1, A5-A8 (N2
c = 10242, 5122, 2562,

1282, and 642). The complete time evolutions of the spectra in (a)-(c), (d)-(f), and, (g)-(i) are illustrated in the

panels V2, V3, and V4 of Video M3.
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Figure 2.10: Log-log (base 10) plots of the spectra Ekin(k) from our DNS runs (initial conditions of type IC3

(a) C1, (b) C2, (c) C3, (d) C4, (e) C5, and (f) C6.

these two values for α is a convenient measure of the errors of our estimates. For

runs C4, C5, and C6, we cannot obtain α2 reliably; the small values of α1 for these

runs indicate very slow growth of kc(t); indeed, in runs C5 and C6, a case can be

made for a logarithmic growth of kc(t) with t.

2.3.4 Complete thermalization

The partially thermalized stage of the dynamical evolution of the 2D, Fourier-

truncated, GP equation may either gradually become completely thermalized, in

0 2 4 6 8 10
10

0

10
1

10
2

(a)

t (× 103)

k c

 

 

A1
A2
A3
A4
B2
C1
C2
C3
C4
C5
C6

10
−2

10
−1

10
010

−5

10
−4

10
−3

10
−2

10
−1

(b)

k
c
/k

max

dk
c/d

t

 

 

A1
A2
A3
A4
B2
C1
C2
C3
C4
C5
C6

Figure 2.11: Plots of (a) the self-truncation wave-number kc(t) versus time t and (b) dkc/dt versus kc/kmax

from our DNS runs A1-A4, B2, and C1-C6.
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E kmax ξ ξkmax kic kfc α1 α2

A1 2.120 100.53 1.01 101.73 4.52 12.42 0.28 0.26

A2 3.045 100.53 0.72 71.9 5.39 18.72 0.28 0.28

A3 5.82 100.53 0.45 45.49 7.11 31.3 0.29 0.27

A4 49.69 100.53 1.01 101.73 17.31 30.53 0.2 0.21

B2 0.589 12.57 1.01 12.72 2.23 9.23 0.24 0.25

C1 2.536 25.13 0.45 11.37 7.08 19.91 0.22 0.22

C2 0.583 25.13 1.01 25.43 6.15 8.90 0.12 0.14

C3 0.637 25.13 1.01 25.43 6.18 10.05 0.14 0.15

C4 0.6999 25.13 1.01 25.43 9.05 11.07 0.09 −
C5 1.085 25.13 1.01 25.43 15.09 16.08 0.04 −
C6 1.557 25.13 1.01 25.43 20.17 20.87 0.02 −

Table 2.2: Summary of the self-truncation results from our DNS runs A1-A4, B2, and C1-C6: E is the total

energy; kmax = 2πNc/2L; ξ = L/
√
g is the healing length; kic and kfc are the initial and final values of kc

(averaged over a few time steps); α1 is the slope obtained from the log-log (base 10) plot of kc versus t and

α2 = 1/(1− χ), where χ is the slope obtained from the log-log (base 10) plot of dkc/dt versus kc/kmax.

which state a power-law scaling region is present in the entire energy and the oc-

cupation number spectra, or remain self-truncated with logarithmic growth. In

Figs. 2.5 (g)-(i) and 2.6 (a)-(c), we show the compressible kinetic energy spectra

Ec
kin for the runs B1 and A7, where Ec

kin shows power-law scaling over the entire

wave number range, from k = 2π/L up to kmax, towards the end of the respective

simulations; a naı̈ve fit is consistent with Ec
kin(k) ∼ k (but see below).

Correlation functions and the BKT transition

A uniform, 2D, interacting Bose gas exhibits a BKT phase at low energies (tem-

peratures in the canonical ensemble). Thus, the completely thermalized state of

the 2D, Fourier-truncated, GP equation should yield a BKT phase [54, 56], with

the correlation function c(r) ∼ r−η, at energies E < EBKT ; and c(r) should decay

exponentially with r if E > EBKT . We show this explicitly now by using initial

conditions of type IC1 with Nc = 64 and Nc = 128 and g = 1000; we obtain different

energies by changing k0 and σ (runs D1-D13 and E1-E12 in Table 2.3).

In Fig. 2.12, we present plots of the correlation functions c(r). To illustrate the

BKT transition clearly, we present log-log plots of c(r) versus r, for E < EBKT, in

Figs. 2.12 (a) and (d), where the straight lines indicate power-law regimes; and, for

E > EBKT, we use semi-log plots, as in Figs. 2.12 (b) and (e), where the straight

lines signify an exponential decay of c(r) with r. Given the resolution of our DNS

runs, we find that, in a small energy range in the vicinity of EBKT, we cannot fit

power-law or exponential forms satisfactorily; this leads to an uncertainty in our

estimate for EBKT. Aside from this uncertainty, the behavior of c(r), in the regime
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Nc = 128 k0 σ E η Nc = 64 k0 σ E η

(×∆k) (×∆k) (×∆k) (×∆k)

D1 5 2 2.1 0.008 E1 0 2 1.12 0.012

D2 10 2 5.05 0.024 E2 3 2 1.64 0.025

D3 12 2 6.74 0.034 E3 5 2 2.2 0.040

D4 14 2 8.74 0.047 E4 8 2 3.68 0.083

D5 16 2 11.05 0.080 E5 10 2 5.04 0.164

D6 18 2 13.68 0.111 E6 11 2 5.84 0.255

D7 20 2 16.62 0.181 E7 12 2 6.75

D8 21 2.5 18.34 0.239 E8 13 2 7.74

D9 24 3 23.75 E9 14 2 8.78

D10 25 2 25.3 E10 15 2 9.88

D11 26 2 27.27 E11 16 2 11.05

D12 28 2 31.44 E12 17 2 12.32

D13 30 2 35.9

Table 2.3: List of parameters for our complete-thermalization DNS runs D1-D13 (N2
c = 1282) and E1-E12

(N2
c = 642): N2

c is the number of collocation points; k0 is the energy-injection scale; σ is Fourier-space width of

ψ at t = 0; E is the total energy; and η is the exponent of the correlation function c(r) ∼ r−η for E < EBKT .

g = 1000 for all the DNS runs and they have been performed on a square simulation domain of area A = L2,

with L = 32.

of complete thermalization, is in accord with our expectations for the BKT phase;

in particular, the exponent η (see Eq. (2.18)) depends on E for E < EBKT as shown

in Figs. 2.12 (c) and (f). Our values for η, for the runs with E < EBKT and with

Nc = 64 and Nc = 128, are listed in Table 2.3. Note that EBKT ≃ 6(Nc = 64) and

EBKT ≃ 19(Nc = 128), i.e., EBKT depends on Nc, the number of collocation points; we

show analytically below how a low-temperature analysis can be used to understand

this dependence of EBKT on Nc. In the completely thermalized state of the Fourier-

truncated, 2D, GP system, N0 must vanish in the thermodynamic limit by virtue

of the Hohenberg-Mermin-Wagner theorem [59,60] and n(k) ∼ k−1+η; it is not easy

to realize this limit in finite-size systems and with the limited run times that are

dictated by computational resources (see the plots of N0 in Fig. 2.3); however, finite-

size scaling can be used to extract the exponent η from the k = 0 part of n(k) as

shown in Ref. [74]; similarly, Ec
kin(k) should also show a power-law form with an

exponent that depends on η, but this is difficult to realize in numerical calculations

with limited spatial resolutions and run lengths.

Analytical estimation of the energy of the BKT transition

The energy of a pure condensate of a uniform, weakly interacting, 2D Bose gas,

which is described by the GP equation Eq. (2.1), is E0 = g/(2A). We define the
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Figure 2.12: Plots of c(r) versus r for different energies in the complete-thermalization regime, for N2
c = 1282

((a) and (b)) and N2
c = 642 ((d) and (e)). (a) and (d) Log-log (base 10) plots of c(r) versus r for different energies

E < EKT ; the slopes of the linear parts of these plots yield the exponent η (Table 2.3); (b) and (e) semilog

(base(10) plots of c(r) versus r for different energies E > EKT ; (c) (N2
c = 1282) and (f) (N2

c = 642) show plots of

η and N0 versus E (on the time scales of our runs N0 is nonzero; see the text for a detailed discussion).

energy of our system to be E = E0(1 + δE); this energy E is fixed by the initial

condition; and δE measures the relative amount by which E exceeds E0. As we

show in the Appendix A.2, the Nc dependence of the energy EBKT, at which the

BKT transition occurs, can be obtained approximately as follows. We begin with

δEBKT = δẼBKT
8

log(π2Nc
2
(
1 + π2 Nc

2

2 g

)
)
, (2.28)

where δẼBKT, the estimate for the BKT transition energy that follows from an

energy-entropy argument (see Eq. (2.20) in the Appendix and [54]), is

δẼBKT =
π2Nc

2

2 g
=
ξ2k2max

2
, (2.29)

whence we obtain

δEBKT =
4 k2max ξ

2

log(k2max A
(
1 + k2max ξ2

2

)
)
. (2.30)

We can now write

EBKT = E0

(
1 +

4π2N2
c

g log(π2N2
c (1 +

π2N2
c

2g
))

)
; (2.31)
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Nc E0 δẼBKT δEBKT EA
BKT EDNS

BKT

64 0.488 20.21 11.84 6.27 5.84

128 0.488 80.85 39.44 19.75 18.34

Table 2.4: The values of E0, δẼBKT (see Eq. (2.29)), δE (see Eq. (2.30)), EA
BKT (see Eq. (2.31)), and EDNS

BKT from

our DNS runs D1-D13 (Nc = 64) and E1-E12 (Nc = 64). E0 is the ground state energy of a pure condensate of a

uniform, interacting, 2D Bose gas and EDNS
BKT is BKT-transition energy determined using our DNS runs.

by using this expression we can determine the ratio EBKT(N
a
c )/EBKT(N

b
c ) for runs

with two different values, Na
c and N b

c , for the number of collocation points; we

can also obtain this ratio from our DNS, by determining the value of E at which

the exponent η becomes 1/4. In Table 2.4 we compare EBKT(Nc) for Nc = 64 and

Nc = 128; our analytical approximation Eq. (2.31) yields E128
BKT/E

64
BKT ≃ 3.15; this is

in excellent agreement with the value ≃ 3.14 that we obtain for this ratio from our

DNS results.

The thermalized state in the run A1 is in the BKT phase, because its total energy

E < E1024

BKT = 818.7 Eq. (2.31); thus, the system should be devoid of any free vortices,

so the power-law tails in the velocity PDFs should disappear; this is indeed what we

find. By contrast, for the thermalized states with energy E > EBKT , free vortices

and antivortices are present so the velocity PDFs should show power-law tails, in

such states, as we show explicitly in figure F3 in the supplementary material for

the run D10, which has E > EBKT in the thermalized state.

2.4 Conclusions

We have carried out an extensive study of the statistical properties of the dissi-

pationless, unforced, 2D, Fourier-truncated, GP equation. Our study has been de-

signed specifically to study and identify the universal features, if any, of the turbu-

lent evolution of the solutions of this equation, by undertaking a systematic DNS.

In our study, we have used statistical measures such as velocity-component PDFs

and energy and occupation-number spectra, for a large number of initial conditions.

To the best of our knowledge, such a comprehensive study of the Fourier-truncated,

2D, GP equation has not been attempted hitherto.

Our comprehensive study of the Fourier-truncated, 2D, GP equation, which

makes use of the three types of initial conditions (Sec. 2.2.2) and a wide range

of parameters (Tables 2.1 and 2.3), allows us to systematize the dynamical evo-

lution of this system into four different regimes, with qualitatively different sta-

tistical properties. This demarkation of the evolution into different regimes has

not been systematized in earlier studies, which have concentrated only on one or



2.4. Conclusions 78

two of these regimes. For example, the study of Ref. [40] has investigated states

with a significant number of vortex-anitvortex pairs and obtained for them PDFs

of velocity components that have power-law tails of the type shown in Fig. 2.2.

References [48, 56, 74] have investigated the BKT nature of the thermalized state.

Wave-turbulence studies [33, 42, 75] have focussed on power-law regions in energy

and occupation-number spectra of the type we find in our third regime. The DNS

studies in [42–46, 49, 76] have considered the time evolution of spectra and PDFs

for the Fourier-truncated, 2D, GP equation; in some cases, these studies introduce

dissipation or hyperviscosity and forcing; they have also reported different power

laws in spectra [43, 44, 46]. A recent theoretical and numerical study [49] has

studied power-law regimes, associated with metastable transient states in the 2D

Gross-Pitaevskii system; it suggests that these power-law regimes occur because

of non-thermal fixed points. Our work suggests that, for the class of initial condi-

tions which we have considered, at least in the dissipationless, unforced, Fourier-

truncated, 2D, GP equation, the only robust power laws in spectra are the the ones

we have reported above; all other apparent power laws occur either (a) for very

special initial conditions [45] or (b) last for fleetingly small intervals of time and

extend over very small ranges of k.

To recapitulate, we find that, in the first dynamical-evolution regime of the

Fourier-truncated, 2D, GP equation, there are initial-condition-dependent tran-

sients. In the second regime the energy and the occupation-number spectra start

to develop power-law scaling regions, but the power-law exponent and the extent of

the scaling region change with time and are influenced by the initial conditions. In

the third regime, of partial thermalization, we find Ec
kin(k) and Eint(k) + Eq(k) ∼ k,

and n(k) ∼ 1/k, for k < kc(t) and, for k > kc, we find an initial-condition-dependent

self-truncation regime, in which the spectra drop rapidly; the self-truncation wave

number kc(t) grows either as tα or logarithmically for different initial conditions

(Table 2.2). In the fourth, complete-thermalization regime, power-law forms of

correlation functions and spectra, for E < EBKT, are consistent with their non-

trivial BKT forms; however, considerable care must be exercised, as explained in

Sec. 2.3.4 and [48, 56, 74], to distinguish these nontrivial power laws from their

wave-turbulence analogs [33,42,75].

We have calculated a variety of order-p structure functions in our study; a full

analysis of these structure functions lies outside the scope of this chapter. How-

ever, we comment briefly on the use of the extended-self-similarity (ESS) proce-

dure [77–79] here. Recall that, in the ESS procedure, log-log plots of the order-p

structure functions Sp(r) versus the third-order structure function S3(r) extend the
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scaling region, and their slopes yield estimates for the multiscaling exponent ra-

tios ζp/ζ3 that are better than the estimates of ζp obtained from slopes of log-log

plots of Sp(r) versus r; this procedure is especially valuable if ζ3 = 1, as it is in

3D fluid turbulence, by virtue of the von Kármán-Howarth relation. We have cal-

culated structure functions [80] of the ψ [81], velocity, and vorticity fields in the

2D, Fourier-truncated, Gross-Pitaevskii equation. The ESS procedure works here

insofar as it extends the range over which scaling occurs; however, the exponents

that follow from such plots evolve in time in a manner that mirrors the evolution

of the spectral exponents that we have described above. A full elucidation of ESS

and multiscaling in the 2D, Fourier-truncated, Gross-Pitaevskii system will be pre-

sented elsewhere [82].
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1 Supplementary Material

In Fig. F1, we have plotted the time evolution of the total number of vortices Nv for

our DNS runs A1-A3.
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Figure F1: Plots showing the time evolution of the total number of vortices Nv (both vortices and antivortices)

from our DNS runs A1 (purple curve), A2 (green curve) and A3 (sky-blue curve).
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Figure F2 shows the time evolution of khd(t) for the DNS runs A1-A3.
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Figure F2: Plot showing the time evolution of the wave number khd from our DNS runs A1 (purple curve), A2

(green curve) and A3 (sky-blue curve); here, khd = 2πλ1/2 = N
1/2
v ∆k. A brown horizontal line represents the

wave number k = 1∆k, which is related to the inverse of the system-size length scale.

Figure F3 shows the PDFs of vx and vy, the Cartesian components of the velocity,

for our DNS runs D10 (ED10 > E1282

BKT , see table 4 in the main text) at t = 9500.
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Figure F3: Semilog (base 10) plots of the PDFs of the x (red circles) and y (green squares) components of the

velocity from our DNS run D10 (Nc = 128) at t = 9500, corresponding to the initial condition of type IC1 (see

table 4 in the main text). The dashed lines indicate power-law fits (∼ v−γ
i ) to the left (blue-dashed line, γ = 2.6)

and right (orange-dashed line, γ = 2.6) tails of the PDFs, we show fits only for i = x.
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Video M1 This video illustrates the time evolutions, from our DNS run A1, of

the following: [top left panel] semilog (base 10) plots of the PDFs of the x (red

circles) and y (green squares) components of the velocity (cf. Fig. 2.2(a)-(c)); [top

right panel] pseudocolor plots of the vorticity ω = ∇×v (with high-k modes filtered

out); [bottom left panel] log-log (base 10) plots of the spectra Ei
kin(k), E

c
kin(k), and

Eq(k) + Eint(k) (cf. Figs. 2.4(a), 2.5(a)-(c), and 2.7 (a)-(c); the orange-dashed line

shows a k power-law behaviour); [bottom right panel] log-log (base 10) plots of the

spectra n(k) (cf. Figs. 2.8 (a)-(c); a k−1 power law is shown by the orange-dashed

line).

Video M2 This video illustrates the time evolution of log-log (base 10) plots of the

compensated, incompressible kinetic energy spectra k5/3Ei
kin(k) from our DNS runs

A1 (purple curve), A2 (green curve), A3 (sky-blue curve), and A4 (brown curve); a

k−5/3 power law in Ei
kin(k) is shown by the orange-dashed line to guide the eye (for

uncompensated versions of these spectra see Figs. 2.4 (a)-(d)).

Video M3 This video illustrates the time evolution of log-log (base 10) plots of the

spectrum Ekin(k) from the following DNS runs: [panel V1] - A1 (purple curve),

A2 (green curve), and A3 (sky-blue curve); [panel V2] A6 (purple curve), A9 (green

curve), and A10 (sky-blue curve); [panel V3] A11 (purple curve), A12 (green curve),

and A13 (sky-blue curve); [panel V4] A1 and A5-A8 (with N2
c = 10242, 5122, 2562,

1282, and 642).



Appendix A

A.1 Note on units

The GP equation, which describes the dynamical evolution of the wave function

ψ(x, t) of a weakly interacting, 2D Bose gas at low temperatures, is

i~
∂ψ(x, t)

∂t
= − ~2

2m
∇2ψ(x, t) + g2D|ψ|2ψ(x, t), (A.1)

where g2D is the effective interaction strength. As we have mentioned earlier (see

Eqs. (2.2) and 2.3), the GP equation conserves the energy, given by the Hamiltonian

H =

∫

A
d2x

(
~2

2m
|∇ψ|2 + g2d

2
|ψ|4

)
, (A.2)

and the total number of particles n =
∫
A |ψ|2d2x. To obtain Eq. (2.1), we first divide

Eq. (A.1) by ~ and define g = g2D/~; we then set ~/2m = 1, with m = 1, so that

|ψ|2 is the same as ρ; this is tantamount to using units with ~ = 2. The energy

of the system, as expressed in Eq. (2.2), is obtained by dividing the Eq. (A.2) by

~ = 2. A comparison with the experimental values can be made by noting that the

healing energy Eh = ~2/(2mξ2); in our units this is simply Eh = 1/ξ2; ξ depends on g

through equation (16); and g is related to g2D as mentioned above. The interaction

strength g2D depends, inter alia, on the scattering length of the 2D interaction

potential and the size of the BEC-cloud; for more details about the actual form of

g2D in two dimensions see [58]. The wave number k = ni∆k, where ∆k = 2π/L and

ni = 0, 1, 2, ...; L is the length of the side of a square simulation domain.

A.2 Standard results on the BKT transition

The Berezinskii-Kosterlitz-Thouless (BKT) transition is best studied by using the

renormalization group [54]; here, we restrict ourselves to the heuristic, energy-

entropy argument to obtain a rough estimate of the BKT transition temperature

83
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TBKT. In the XY model, this transition is studied by using the Hamiltonian

HXY = −J
∑

<i,j>

cos(θi − θj), (A.3)

where < i, j > denotes nearest-neighbour pairs of sites, on a 2D square lattice, J

is the nearest-neighbour exchange coupling, and (θi − θj) is the angle between the

nearest-neighbour, XY spins on sites i and j. In the continuum limit, the above

Hamiltonian becomes, to lowest order in spatial gradients,

HXY =
J

2

∫
d2x(∇θ(x))2. (A.4)

By comparing Eq. (A.4) with the kinetic-energy term in Eq. (A.1), we find that

J =
|〈ψ〉|2~2

m
=

ρΓ2

(2π)2
, (A.5)

where Γ denotes the Onsager-Feynman quantum of velocity circulation Γ = 4π~/2m =

h/m. A rough estimate for the BKT transition temperature TBKT is given below:

T̃BKT =
πJ

2kB
=
π | 〈ψ〉 |2 ~2

2mkB
=

ρΓ2

8πkB
, (A.6)

here T̃BKT denotes the estimate for TBKT that follows from an energy-entropy argu-

ment [54]. For T < TBKT, the phase correlation function c(r) (see Eq. (2.17)) and

the angle-integrated spectrum ĉ(k), which follows from a Fourier transform of c(r),

scale as

c(r) ∼ (a/r)
T

4TBKT (A.7)

and

ĉ(k) ∼ k
−1+ T

4TBKT , (A.8)

respectively. Above TBKT the correlation length

ℓ =

∫
k−1E(k)dk∫
E(k)dk

(A.9)

is finite; and, as T → TBKT, it displays the essential singularity

ℓ ∼ exp(b(TBKT/(T − TBKT))
1/2). (A.10)

A.2.1 Low-temperature thermodynamical computations

We now develop an analytical framework, which is valid at low-temperatures T ≪
TBKT, that can be used to test some of the results of our DNS runs in the region of

complete thermalization. We first calculate equilibrium thermodynamic functions
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for a weakly-interacting, 2D Bose gas, in the grand-canonical ensemble; we then

obtain their analogues in the microcanonical ensemble. In the grand-canonical

ensemble the probability of a given state is

P =
1

Ξ
e−β(H−µN), (A.11)

where Ξ is the grand partition function, β the inverse temperature, µ the chemical

potential, and N the number of bosons. The grand-canonical potential is

Ω = −β−1 log(Ξ); (A.12)

and the mean energy E, entropy S, and N are

N = −∂Ω
∂µ

, (A.13a)

S = β2∂Ω/∂β, (A.13b)

E =
∂Ω

∂β
+ µN =

S

β
+ µN. (A.13c)

We adapt to 2D the 3D study of Ref. [53], expand ψ in terms of Fourier modes

Ak, and obtain Ω as the sum of the saddle-point part Ωsp and ΩQ, the deviations

from the saddle point that are quadratic in Ak. We write Ω = Ωsp + ΩQ, where

Ωsp = −Aµ2/2g and

ΩQ = −
∫ pmax

0

(
pA log( 2m

β
√

p4+4mp2µ
)

)

2πβ~2
. (A.14)

We can also calculate the condensate depletion δN , where the particle number

N = N0 + δN and N0 is the number of particles in the k = 0 mode, as follows:

δN =

∫ pmax

0

mpA
(
p−2 + 1

p2+4mµ

)

2πβ~2
. (A.15)

The integrals in the Eqs. (A.14) and (A.15) can be performed analytically, but, in

contrast to the 3D case where the primitives are zero at p = 0, the 2D primitive for

Ωph is finite at p = 0 and for δN it is infra-red (I.R.) divergent. By subtracting the

I.R. finite and divergent terms from ΩQ and δN , respectively, we get the following

expressions, in 2D, in the thermodynamic limit A → ∞:

Ω = −µ
2A
2g

− p2maxA
4πβ~2

+
mµA log(1 + p2max

4mµ
)

2πβ~2

−
p2maxA log( 2m

β
√

p4max+4mµp2max

)

4πβ~2

(A.16)
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and

δN =
mA

(
log(1 + p2max

4mµ
) + log(p

2
maxA
~2

)
)

4πβ~2
. (A.17)

By using the thermodynamic relations Eq. (A.13), we get

N =
µA
g

−
mA log(1 + p2max

4mµ
)

2πβ~2
(A.18)

and

E =
µ2A
2g

+
p2maxA
4πβ~2

−
mµA log(1 + p2max

4mµ
)

2πβ~2
. (A.19)

A.2.2 Low-temperature results at given density

We next determine the chemical potential µ, which fixes the total density ρ =

mN/A at a given value, by solving the equation

ρ− mµ

g
+
m2 log(1 + p2max

4mµ
)

2πβ~2
= 0; (A.20)

at β = ∞, i.e., zero temperature (subscript 0) we obtain

µ0 =
g ρ

m
; (A.21)

to order β−1 we get

µ = µ0 + δµ, (A.22)

where

δµ =
mg (4gρ2 + ρp2max) log(1 +

p2max

4gρ
)

m2p2max + 2πβ~2ρp2max + 8πβ~2gρ2
. (A.23)

We insert µ from Eq. (A.22) into Eq. (A.17), define the change in density δρ =

mδN/A, use the energy E from Eq. (A.19), and then expand to order β−1 to obtain

δρ =
m2
(
log(1 + p2max

4gρ
) + log(p

2
maxA
~2

)
)

4πβ~2
(A.24)

and

E =
gρ2A
2m2

+
p2maxA
4πβ~2

. (A.25)

By using Eq. (A.6) and ρ = m | 〈ψ〉 |2, we obtain

β̃BKT =
1

kBT̃BKT

=
2m2

πρ~2
, (A.26)
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which we can use along with Eq. (A.24) to relate the condensate relative depletion

δρ/ρ to β/β̃BKT, where β = 1/(kBT ) and kB is the Boltzmann constant, as given

below:

δρ

ρ
=
β̃BKT

8β
log



p2max

(
1 + p2max

4gρ

)
A

~2


 . (A.27)

We use this low-temperature result Eq. (A.27) to estimate the inverse-temperature

scale βBKT, at which the depletion of the k = 0 condensate mode becomes signifi-

cant for a finite-size system with N2
c collocation points (which fixes the maximum

momentum pmax); in particular, we can solve Eq. (A.27), for δρ/ρ = 1, to obtain

βBKT

β̃BKT

=
1

8
log



p2max

(
1 + p2max

4gρ

)
A

~2


 . (A.28)

By making the replacements that correspond do defining ~, m, and g in terms of

c and ξ, as in [53], pmax → ~kmax, ~ →
√
2cmξ, and g → c2m2/ρ, we can rewrite

Eq. (A.28) as
βBKT

β̃BKT

=
1

8
log

(
k2maxA (1 +

kmax
2 ξ2

2
)

)
. (A.29)

A.2.3 Results expressed in terms of energy increase

Our DNS runs, which use initial conditions of type IC1 and IC2, give the dynamical

evolutions of the Fourier-truncated, 2D GP equation, which is a Hamiltonian sys-

tem. The energy E, particle number N , and area A are conserved in this evolution,

so our calculation can be viewed as a simulation of this Hamiltonian system in the

microcanonical ensemble, which yields, eventually, the fully thermalized state that

we have described above. Therefore, we now transform the results, which we have

obtained in the previous subsection, into their counterparts in the microcanonical

ensemble. In the low-temperature limit, Eq. (A.25) yields

β =
m2 p2max A

2π~2 (2m2E − gρ2A)
. (A.30)

The energy of a pure condensate is

E0 = lim
β→∞

E =
g ρ2 A
2m2

; (A.31)

and the energy and the inverse temperature β Eq. (A.30) can be related as follows:

E = E0(1 + δE), (A.32)
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where δE is the relative increase of energy above E0, and

β =
m2 p2max

2π~2gρ2δE . (A.33)

If we now substitute β = βBKT by using Eq. (A.28), we obtain, in terms of c, ξ and ρ

(see text just below Eq. (A.28))

E0 =
c2 ρA
2

, (A.34)

δẼBKT =
k2maxξ

2

2
, (A.35)

and

δEBKT =
4k2maxξ

2

log
(
k2maxA(1 + k2maxξ

2

2
)
) . (A.36)

All the energies mentioned in the main chapter are dimensionless; thus, to convert

the energies given in this Appendix to dimensionless forms, we divide them by ~.

Hence, the energy of a pure condensate is obtained, in the dimensionless form, by

dividing Eq. (A.31) by ~, which gives

E0 =
g

2A =
1

2

g

L2
. (A.37)
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Chapter 3

Superfluid Mutual-friction Coefficients from Vortex

Dynamics in the Two-dimensional Galerkin-truncated

Gross-Pitaevskii Equation

In the previous Chapter we had discussed the equilibration of generic initial con-

ditions, under the two-dimensional Fourier-truncated Gross-Pitaevskii equation dy-

namics. In this Chapter we present the first calculation of the mutual friction coef-

ficients as a function of temperature in a homogeneous, two-dimensional Bose gas

by using the Galerkin-truncated Gross-Pitaevskii equation; for this calculation it is

best to use special initial conditions that we describe here.

3.1 Introduction

The elucidation of the statistical properties of superfluid turbulence and the com-

parison of these with their fluid-turbulence analogs is a problem of central im-

portance that lies at the interface between fluid dynamics and statistical mechan-

ics. Theoretical treatments of superfluid turbulence use a variety of models [1–

3], which are applicable at different length scales and for different interaction

strengths. At low temperatures T and for weakly interacting bosons, the Gross-

Pitaevskii (GP) equation provides a good hydrodynamical description of a super-

fluid in which quantum vortices can be resolved. If we consider length scales that

are larger than the mean separation between quantum vortices, and if we con-

centrate on low-Mach-number flows, then the two-fluid model [4,5] of Hall, Vinen,

Bekarevich, and Khalatnikov (HVBK) provides a good description of superfluid tur-

bulence. In the HVBK equations (see below and Chapter 1 Eqs. (1.65), (1.66), and

(1.67)) the normal and superfluid components are coupled by two mutual-friction

coefficients, α and α′, which can be determined, along with the normal-fluid den-

sity ρn, as functions of T , from (a) experiments [4,6,7], (b) kinetic models [1,3,8], or

96
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(c) the Galerkin-truncated GP equation [9,10]. Such studies have been carried out

only in three dimensions (3D) so far. Given that (a) two-dimensional (2D) and 3D

fluid turbulence are qualitatively different [11, 12] and (b) 2D and 3D superfluids

are also qualitatively different (see, e.g., Refs. [13, 14]), it behooves us to carry out

GP-based investigations of α and α′ for a 2D superfluid.

We present the first calculation of α(T ), α′(T ), and ρn(T ) in two dimensions (2D)

by using the Galerkin-truncated GP system, with very special initial conditions,

which we obtain by using the advective, real, Ginzburg-Landau equation (ARGLE)

and an equilibration procedure that uses a stochastic Ginzburg-Landau equation

(SGLE). We obtain the following interesting and unanticipated results: The deter-

mination of α(T ), α′(T ), and ρn(T ) turns out to be considerably more challenging in

2D than in three dimensions (3D) [9] because of large fluctuations. We extract the

dependence of α(T ), α′(T ), and ρn(T ) on T by using a sophisticated, vortex-tracking

algorithm, which allows us to examine the evolution of vortical configurations, such

as, a pair of vortices and a quadruplet of vortices, placed initially at the corners of

a square.

The remaining part of this chapter is organised as follows. In Sec. 3.2, we de-

scribe the models, initial conditions, and numerical methods we use. Section 3.3 is

devoted to our results. We end with conclusions in Sec. 3.4

3.2 Model, Initial Conditions, and Numerical Methods

The Galerkin-truncated GP equation, which describes the spatiotemporal evolu-

tion of the complex, classical, wave function ψ(x, t) of a weakly interacting 2D Bose

gas at low temperatures, is

i
∂ψ(x, t)

∂t
= PG

[
−α0∇2ψ(x, t) + gPG[|ψ|2]ψ(x, t)

]
, (3.1)

where g is the effective interaction strength, the Galerkin projector PG[ψ̂(k)] =

θ(kmax−k)ψ̂(k), with ψ̂ as the Fourier transform of ψ and θ(·) the Heaviside function.

We can use the Madelung transformation ψ =
√
ρ(x, t) exp(iφ), where ρ and φ are

the density and the phase field, respectively, to write the velocity v = 2α0∇φ. In

our units (Appendix C.1), the quantum of circulation is 4πα0, the sound velocity

c =
√
gρ∗, the healing length ξ =

√
2α2

0/(gρ
∗), the total density ρ∗ = N/A, and

A = L2 is the area of our 2D, periodic, computational domain of side L. This

truncated GP equation (TGPE) conserves the total energy H = 2α0

∫
A d

2x(α|∇ψ|2 +
g
2
[PG|ψ|2]2), the total number of particles N =

∫
A d

2x|ψ|2, and the momentum P =

α0

∫
A d

2x(ψ∇ψ∗−ψ∗∇ψ). We use the 2/3 dealiasing rule in our pseudospectral direct
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numerical simulation (DNS) of the TGPE, with the maximum wave number kmax =

2/3 × Nc/2, where N2
c is the number of collocation points [9]. Global momentum

conservation in this DNS is essential for capturing accurately the interactions of

the normal fluid with the superfluid vortices [9].

Generic initial conditions evolve, under the 2D TGPE dynamics, towards equi-

librium in the microcanonical ensemble; this process of equilibration is slow [10]:

the system goes through initial transients, then displays the onset of thermal-

ization, which is followed by a regime of partial thermalization, and then com-

plete thermalization with a low-T Berezinskii-Kosterlitz-Thouless (BKT) phase,

a high-T phase with unbound vortices, and a transition between these phases

at TBKT. To accelerate equilibration and to have direct control over (a) T , for

the desired equilibrium state, and (b) states with counterflows, we use the gen-

eralized grand canonical ensemble with the equilibrium probability distribution

P[ψ] = Ξ−1 exp[−β(H−µN−w ·P)], where Ξ is the grand partition function, β = T−1

(we set the Boltzmann constant kB = 1), µ the chemical potential, and w = vn − vs

the counterflow velocity, and vn and vs the normal and superfluid velocities, respec-

tively. We construct a stochastic process, which leads to this P[ψ], via the 2D SGLE

Langevin equation

∂ψ

∂t
= PG

[
α∇2ψ − gPG[|ψ|2]ψ + µψ − iw · ∇ψ + ζ(x, t)

]
, (3.2)

where ζ is a zero-mean, Guassian white noise with 〈ζ(x, t)ζ∗(x′, t′)〉 = Dδ(x−x′)δ(t−
t′), δ the Dirac delta function and D = 1/(2αβ), in accordance with the fluctuation-

dissipation theorem. We solve this SGLE along with dµ/dt = −νN
A (N − Nav), so

that Nav controls the mean value of N and νN governs the rate at which the SGLE

equilibrates. If we include the counterflow term iw · ∇ψ, we obtain equilibrium

states with a non-vanishing w, by inducing an asymmetry in the repartitioning of

the sound waves in the system.

In the HVBK, two-fluid model [4, 6], the mutual friction leads to an interaction

between the normal fluid and the superfluid. Here, a superfluid vortex does not

move with the superfluid velocity vs but with velocity

v = vsl + αs′ × (vn − vsl)− α′s′ × [s′ × (vn − vsl)], (3.3)

where vsl = vs + vsi is the local superfluid velocity, with vs and vsi the imposed su-

perfluid velocity and the self-induced velocity because of the vortices, respectively,

vn is the normal fluid velocity and s′ is the unit tangent at a point on the vortex,

with position vector s. (Equation (3.3) is normally written in three dimensions

(3D). To use it in 2D, it is simplest to use a 2D projection of an infinitely long and

straight vortical filaments in 3D.) We compute the normal-fluid density ρn and the
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mutual-friction coefficients α and α′ for some representative temperatures T below

TBKT, from the dynamical evolution of the following two initial configurations in

the 2D TGPE: (1) ψIC1 = ψpairψeq; and (2) ψIC2 = ψlatticeψ
cf
eq. We obtain the initial

configuration ψIC1 by (a) first preparing a state ψpair, which corresponds to a small,

vortex-antivortex pair translating with a constant velocity along the x direction

(Appendix C.2) and (b) then combining it with an equilibrium state ψeq to include

finite-temperature effects (Appendix C.3). To obtain the second initial configura-

tion ψIC2, we first prepare ψlattice, in which we place vortices of alternating signs on

the corners of a square (a crystal-like vortex lattice by virtue of the periodic bound-

ary conditions we use) (Appendix C.2); and then we include finite-temperature and

counterflow effects by combining it with the state ψcf
eq (Appendix C.3). We obtain

ψeq and ψcf
eq by solving the SGLE Eq. (3.2); and then we use ψIC1 to determine α and

ψIC2 to calculate both, α and α′.

We perform a pseudospectral, direct numerical simulations (DNS) of the TGPE

Eq. (3.1), to study the spatiotemporal evolution of the initial configurations ψIC1

and ψIC2. We discretize ψ(x, t) on a square simulation domain of side L = 2π with

N2
c = 1282 collocation points. We use periodic boundary conditions in both spatial

directions, because we study the homogeneous flows in the 2D TGPE; and we use

a fourth-order, Runge-Kutta scheme, with time step ∆t, for time marching. In all

our DNSs, we use c = 1 and ξ = 1.44dx, with dx = L/Nc; moreover, we set the total

average density ρ∗ = N/A = 1. We take w = vnx̂ for all our SGLE DNSs with

counterflows.

3.3 Results

In this Section we present the results from our DNS studies of the 2D TGPE and

SGLE. We begin with our results for ρn and then show how to obtain α(T ) and α′(T )

by analysing the time evolutions of the special vortical configurations.

We calculate ρn at a temperature T as follows: We first plot the x component of

the momentum Px versus vn, the modulus of the counterflow velocity w = vnx̂, by

using our SGLE DNS for five representative values of T/T̃BKT (Fig. 3.1(a)); we then

obtain

ρn =
1

A
∂Px

∂vn
|vn=0. (3.4)

The values of ρn, at different values of T/T̃BKT, are listed in column 3 of Table 3.1.

In Fig. 3.1(b), we plot versus the scaled temperature T/T̃BKT, where T̃BKT is a rough,

energy-entropy-argument estimate of the BKT transition temperature [13, 14], ρn
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T/T̃BKT ρn αIC1 w αIC2 α′

IC2

R1 6.37 × 10−4 2.7× 10−4 (2± 1)× 10−6 0.8 2.5× 10−5 −2.2× 10−5

R2 3.19 × 10−3 1.37 × 10−3 (1.0± .3)× 10−4 0.8 1.8× 10−4 −1.5× 10−4

R3 6.37 × 10−3 2.7× 10−3 (2.2± .6)× 10−4 0.6 3.6× 10−4 −1.8× 10−4

R4 3.19 × 10−2 1.39 × 10−2 (1.6± .5)× 10−3 0.4 2.3× 10−3 −4.5× 10−4

R5 6.37 × 10−2 2.85 × 10−2 (4± 1)× 10−3 0.2 6.9× 10−3 4.0× 10−4

R6 9.56 × 10−2 4.37 × 10−2 − 0.1 1.2× 10−2 −1.2× 10−3

R7 1.20 × 10−1 5.97 × 10−2 (1.2± .6)× 10−2 0.1 1.6× 10−2 2.9× 10−3

R8 1.59 × 10−1 7.66 × 10−2 − 0.1 1.4× 10−2 4.2× 10−3

R9 1.78 × 10−1 8.71 × 10−2 − 0.1 2.2× 10−2 −3.5× 10−3

Table 3.1: Mutual-friction results from our DNS runs R1-R9: T/T̃BKT is the scaled temperature; T̃BKT =

1.57 × 10−2 is the energy-entropy-argument based estimate of the BKT transition temperature; ρn is the

normal-fluid density; w = vnx̂ is the counterflow velocity; α and α′ are the mutual friction coefficients, where

the subscripts IC1 and IC2 denote the initial configurations. In all our DNS runs, the total average density

ρ∗ = 1, the total number of collocation points N2
c = 1282, the healing length ξ = 1.44∆x, ∆x = 2π/Nc, the

speed of sound c = 1, and the quantum of circulation α0 ≃ 0.05 are kept fixed.

(green curve), (1 − ρn) (sky-blue curve), and the condensate fraction N0/N (purple

line), where N0 is the population of the zero-wave-number mode.

We begin with our results for the time evolution of ψIC1 = ψpairψeq as dictated

by the TGPE (3.1); the state ψpair represents a vortex-anitvortex pair, whose cen-

ters are separated, initially, by the small distance d ≃ 5.4ξ and which moves at a

constant velocity vpair = 0.2775x̂. The state ψeq, which is an absolute-equilibrium

state at a temperature T < TBKT, provides the normal fluid that interacts with

the vortex-antivortex pair. This interaction, during the TGPE evolution of ψIC1 =

ψpairψeq, leads to a decrease in d as time increases. We determine this time de-

pendence by tracking the positions of the vortices and thus obtain the plots of d2

versus time t, shown in Fig. 3.2, for six representative values of T/T̃BKT, by using

equilibrium states ψeq at different temperatures (DNS runs R1-R5, R7 in Table 3.1).

To average our data for d2, we use 10 different realizations of ψeq, which we obtain

from the SGLE at every value of T/T̃BKT that we consider. The Video M1, for the

DNS run R2, shows, via pseudocolor plots, the spatiotemporal evolution of the field

|ψ(x, t)|2; we observe here that the vortex-antivortex pair moves under the com-

bined influence of its initial momentum and the finite-temperature fluctuations;

and the mean distance between the vortex and antivortex decreases with time; fi-

nally, this pair disappears from the system (on time scales that are much longer

than those shown in the video). From the plots in Fig. 3.2, which show data for
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all the 10 realizations mentioned above, we see that (a) d2 fluctuates significantly

in time and (b) these fluctuations increase with T/T̃BKT (compare Figs. 3.2(a) -(f)).

Thus, the higher the temperature, the more these fluctuations limit our ability to

determine d2 reliably, with averages over a fixed number (10 in our calculations)

of realizations of ψeq, which we must limit, perforce, because of the computational

cost of these calculations. In Appendix B.1.1 we show that

dd2/dt = −8α0(1− α′)α, (3.5)

in which we can neglect α′, because α′ ≪ 1 (as we show below). For details see ap-

pendix B.1.1. Thus, for a given realization of ψeq at temperature T , we can obtain

α(T ) from the slope of a straight-line fit to a plot of d2 versus t. At each value of T ,

we obtain 10 values of α(T ), because we have 10 realizations of ψeq. The mean of

these values yield the values of α that we have listed in column 4 of Table 3.1; the

standard deviations yield the error bars. Note that α increases with the tempera-

ture (over the range we consider).

We consider next the time evolution of ψIC2 = ψlatticeψ
cf
eq under 2D TGPE dynam-

ics. The state ψlattice consists of a quadruplet of alternating vortices and antivortices

on the vertices of a square with sides of length π; for this state, the self-induced

velocity ui, because of these vortices and antivortices, is zero at T = 0. We com-

bine ψlattice with the thermalized state ψcf
eq, which we obtain from the 2D SGLE, at

different values of T/T̃BKT and counterflow velocity w = wx̂, with w = vn. Fig-

ures 3.3(a)-(c) show pseudocolor plots of the density field, for our DNS run R2 at

T/T̃BKT = 3.19 × 10−3 and w = 0.8, at three different times t = 0, t = 500, and

t = 1000, respectively. Figures. 3.3(a)-(c) and the corresponding Video M2 show

that the vortex-lattice drifts under the influence of the imposed counterflow. In the

initial phase of this drift, the vortex-lattice has an adaptation time period, dur-

ing which a perpendicular motion with a negligible velocity and a drift parallel to

the applied counterflow are generated. This adaptation makes the vortex-lattice

imperfect, which we quantify by δ = 1
4
[(δy2 + δy4) − (δy1 + δy3)], where δyi is the y-

displacement of the vortex i (see Fig. 3.4(a)); the drift parallel to the applied coun-

terflow is given by δx = 1
4
(δx1+δx2+δx3+δx4), with δxi being the x-displacement of

the vortex i. The appearance of the imperfection δ(t) and its increase with t results

in a self-induced velocity vsi, which leads to a decrease in the effective counter-

flow w(t) because of the conservation of the total momentum. A phenomenological

model, which accounts for this effect (Appendix B.1.2 of this Chapter) yields

δ(t) =
ρnw0

α0(χvρn + χpρ)

(
1− exp

[
−αα0(χvρn + χpρ)

ρn
t
])

(3.6)
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Figure 3.1: Plots of (a) the momentum Px versus the applied counterflow velocity w for the DNS

runs R1-R5; (b) the condensate fraction N0/N (purple line), the normal fluid density ρn (green line),

and 1 − ρn (sky-blue line) versus T/T̃BKT ; (c) the mutual friction coefficients αIC1 (purple line) and

αIC2 (green line) versus T/T̃BKT ; (d) B = 2α/ ρn

ρ versus T/T̃BKT . Here the subscripts on α refer to

the initial conditions IC1 and IC2.
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Figure 3.2: Plots of the square of the vortex-pair length d2/ξ2 versus time ct/ξ from our DNS runs:

(a) R1 at T/T̃BKT = 6.37× 10−4; (b) R2 at T/T̃BKT = 3.19 × 10−3; (c) R3 at T/T̃BKT = 6.37× 10−3; (d)

R4 at T/T̃BKT = 3.19 × 10−2; (e) R5 at T/T̃BKT = 6.37 × 10−2; (f) R7 at T/T̃BKT = 1.20 × 10−1. For

each plot, the different solid lines indicate the time evolution of d2/ξ2 for the different realizations

of ψeq, which we obtain from the steady state of the SGLE. To reduce the noise in the plots of d2, for

these different realizations we have a moving-average-based smoothening procedure (the function

smooth in Matlabr); this procedure introduces slight artifacts (high or low values of d2) near the

lowest and highest values of t in these plots. The average of the plots of d2 versus t is shown by a

black dashed curve, at given value of T . The orange dashed line, a linear fit to this curve, is shown

to guide the eye.
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(a) (b) (c)

Figure 3.3: Pseudocolor plots of the density field |ψ(x, t)|2 from our DNS run R2 at three different

instants of time: (a) t = 0, (b) t = 500, and (c) t = 1000; showing the drift of the vortex-crystal under

the imposed counterflow w = 0.8x̂ at T/T̃BKT = 3.19 × 10−3. The + and − symbols in white color

show the sign of the vortices and the black-frame box is an aid-to-eye to show the displacement

from the initial location. The Video M2 shows, via pseudocolor plots, the spatiotemporal evolution of

the field |ψ(x, t)|2.

and

δx(t) =

([
χvρn − α′(χvρn + χpρ)

]
exp
[
−αα0(χvρn + χpρ)

ρn
t
]
− χvρn

+ (χvρn + χpρ)(α
′ + αα0t)

)
ρnw0

αα0(χvρn + χpρ)2
,

(3.7)

where w0 is the counterflow velocity at t = 0; χv and χp are the proportionality

constants given by vsi(δ) = χvα0δ and Psi(δ) = 4π2χPα0ρδ, where Psi the self-induced

momentum arising from the vortex-lattice imperfection, respectively. We deter-

mine α(T ) and α′(T ) from the fits, suggested by the forms in Eqs. (3.6) and (3.7),

to the plots of δ and δx, which we obtain from our DNS runs R1-R9 at different

temperatures; we give the details in Appendix B.1.2. Figures 3.4(b) and (c) contain

plots versus t of δ(t) and δx(t), respectively; Fig. 3.4(b) shows the saturation of the

vortex-lattice imperfection. The values of α(T ) and α′(T ) that we obtain are listed

in columns 6 and 7 of Table 3.1 for different values of T/T̃BKT .

We note that the measurement of α′(T ) in 2D is difficult because of the following

reasons: (1) at low-temperatures the effect is small; (2) at high-temperatures there

are large thermal fluctuations that lead to large and noisy oscillations of the vortex-

lattice. Even though an accurate determination of α′(T ) is difficult, we find that

α′(T ) is always smaller in magnitude than α(T ). For similar studies in the 3D GPE

we refer the readers to Refs. [9,15–17].

The existence of the transverse force, which is related to the third term on the

right-hand side of Eq.(3.3), has been the subject of a debate in the latter half of the

1990s [18–24]. There is agreement on the longitudinal force; but the existence of a

transverse (or Iordanskii) force is often debated. This transverse force is linked to
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Figure 3.4: (a) Schematic diagram of the vortex-lattice imperfection; the square shows the shape of

the vortex lattice at t = 0. Plots versus time t of (b) imperfection δ = 1
4 [(δy2 + δy4)− (δy1 + δy3)]; (c)

drift δx = 1
4 (δx1 + δx2 + δx3 + δx4); from our DNS run R2. The orange-dashed lines indicate the fits

obtained by the use of Eqs. (3.6) and (3.7).

the asymmetry of the scattering of quasiparticles by a vortex [25, 26]; and, if it is

present, it implies that the second mutual-friction coefficient α′ (or B′) is nonzero.

Thus, given that we find that α′ 6= 0, our calculations imply that there is a nonvan-

ishing Iordanskii force. However, we emphasize that the numerical determination

of α′ is a difficult tasks. We hope that our work will lead to more accurate determi-

nation of α and α′ than those we have given here.

3.4 Conclusion

We have shown how to obtain α(T ), α′(T ), and ρn(T ), which are required as inputs

for the 2D HVBK two-fluid model for superfluids, by using the Galerkin-truncated

GP system, with very special initial conditions, which we obtain by using the ad-

vective, real, Ginzburg-Landau equation (ARGLE) and an equilibration procedure

that uses the SGLE. The determination of α(T ), α′(T ), and ρn(T ) turns out to be

considerably more challenging in 2D than in three dimensions (3D) [9] because of

large fluctuations. Nevertheless, we succeed in obtaining α(T ), α′(T ), and ρn(T ) for

temperatures such that T/T̃BKT . 10−1, by using a sophisticated, vortex-tracking

algorithm, which allows us to examine the evolution of special vortical configu-

rations. At such low temperatures, the difference between the superfluid density

ρs, which should be obtained strictly by using a helicity modulus [13, 14, 27], and

(1−ρn) should not be significant in typical, laboratory-scale systems; and the HVBK

model, with the values of α(T ), α′(T ), and ρn(T ) that we have listed in Table 3.1,

should provide a good description of the dynamics of 2D superfluids so long as

we probe scales that are larger than the mean separation between quantum vor-

tices. We hope our study will lead to experimental measurements of α(T ), α′(T ),
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and ρn(T ) in 2D superfluids, whose analogs for 3D superfluids [6] have been known

for several decades.
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3.5 Video Captions

Video M1 This video illustrates the spatiotemporal evolution of the field |ψ(x, t)|2
for the initial configuration ψIC1 = ψpairψeq from our DNS run R2.

Video M2 This video illustrates the spatiotemporal evolution of the field |ψ(x, t)|2
for the initial configuration ψIC2 = ψlatticeψ

cf
eq from our DNS run R2.



Appendix B

Determination of the

mutual-friction coefficients

B.1 Mutual friction coefficients α and α′

B.1.1 Determination of α by using the initial configuration IC1

We can use Eq. (3.3) to write the distance Lpair(t) travelled in the x direction by a

vortex-antivortex pair of size d (in the y direction) as

dLpair

dt
= (1− α′)vsi = (1− α′)

κ

2πd
, (B.1)

where κ = 4πα0. The time variation of the pair-size d is governed by

dd

dt
= −2α

dLpair

dt
, (B.2)

where α and α′ are the coefficients of mutual friction. Equations (B.1) and (B.2)

yield

dd

dt
= −4α0(1− α′)α

1

d
; (B.3a)

dd2

dt
= −8α0(1− α′)α. (B.3b)

Therefore, α is given by

α =
dd2/dt

8α0(1− α′)
. (B.4)

If α′ ≪ 1, then

α =
dd2/dt

8α0

. (B.5)

108
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B.1.2 Determination of α and α′ by using the initial configuration IC2

To a first approximation, the self-induced velocity vsi and momentum Psi are linear

functions of the vortex-lattice imperfection δ:

vsi(δ) = χvα0δ; (B.6)

and

Psi(δ) = 4π2χPα0ρδ; (B.7)

here ρ is the total density. The coefficients χv and χP depend on the properties of

the system. We determine these by imposing a flow with velocity vsi on the perfect

vortex lattice and then obtaining the ground state of this system by using the AR-

GLE (Appendix C.2) coupled with a Newton’s method (Appendix C.2); the vortex

lattice adapts to the applied flow. We repeat the above procedure for different flow

velocities and measure the imperfection δ and the momentum Psi; the coefficients

χv and χP are then extracted from the slopes of the linear fits to the plots of vsi

versus δ and Psi versus δ, respectively (Eqs.(B.6) and (B.7)).

The counterflow momentum Pcf(w), from Eq. (3.4), is linear in the counterflow

w

Pcf(w) = ρnwA, (B.8)

where A = 4π2. The total momentum conservation implies that an increase in the

vortex-lattice imperfection leads to a decrease in the effective counterflow velocity

w. We have

P0 = 4π2ρnw0 = Psi + Pcf , (B.9)

where ρn is the normal-fluid density and P0 and w0 are the t = 0 values of the coun-

terflow momentum and velocity, respectively. Therefore, the counterflow velocity

as a function of δ is

w(δ) = w0 −
χPα0ρ

ρn
δ. (B.10)

From Eq. (3.3) the components of the velocity (for any vortex or antivortex in our

system) parallel and perpendicular to the counterflow velocity are, respectively,

vq = vsi(δ) + α′[w(δ)− vsi(δ)]

= α0

(
χv − α′χv −

α′χpρ

ρn

)
δ + α′w0

(B.11)

and

v⊥ = α[w(δ)− vsl(δ)]

= αw0 −
α(χvρn + χpρ)α0

ρn
δ.

(B.12)
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The imperfection in the vortex lattice saturates when v⊥ is zero, which gives the

following values for the imperfection and the drift velocity, respectively, at satura-

tion (subscript ∞):

δ∞ =
ρnw0

α0(χvρn + χpρ)
; (B.13)

and

vq∞ =
χvρnw0

χvρn + χpρ
. (B.14)

The Eqs. (B.13) and (B.14) show that the large-time behavior of δ and vq are inde-

pendent of α′. The equation of motion for δ is

dδ(t)

dt
= αw0 −

αα0(χvρn + χpρ)

ρn
δ, (B.15)

whose solution, with the initial condition δ(0) = 0, is

δ(t) =
ρnw0

α0(χvρn + χpρ)

(
1− exp

[
−αα0(χvρn + χpρ)

ρn
t
])
. (B.16)

We use Eq. (B.16) to rewrite Eq. (B.11) as

vq(t) =
χvρnw0

χvρn + χpρ
+

(
α′w0 −

χvρnw0

χvρn + χpρ

)
exp
[
−αα0(χvρn + χpρ)

ρn
t
]
; (B.17)

the equation of motion for the drift δx is

dδx

dt
= vq(t); (B.18)

the solution of the Eq. (B.18), with the initial condition δx(0) = 0, is

δx(t) =

([
χvρn − α′(χvρn + χpρ)

]
exp
[
−αα0(χvρn + χpρ)

ρn
t
]
− χvρn

+ (χvρn + χpρ)(α
′ + αα0t)

)
ρnw0

αα0(χvρn + χpρ)2
.

(B.19)

To extract α and α′ from our data, from the DNS runs R1-R9 with the initial

configuration IC2, we rewrite Eqs. (B.16) and (B.19), respectively, in the following

simplified form:

δ(t) = D(1− exp(−Bt)) (B.20)

and

δx(t) = A(1− exp(−Bt)) + Ct. (B.21)

The coefficients are

A =
α′ρnw0

αα0(χpρ+ χv)
− χvρ

2
nw0

αα0(χpρ+ χv)2
, (B.22)
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Figure B.1: Plots of the (a) δDNS
∞

/δModel
∞

and vq,DNS
∞

/vq,Model
∞

versus T/T̃BKT ; (b) mutual friction coef-

ficient α′ versus T/T̃BKT , obtained from the DNS runs R1-R9 using the initial configuration IC2.

B =
αα0(χpρ+ χv)

ρn
, (B.23)

C = vq∞, and D = δ∞. In Fig. B.1(a) we compare the values of δ∞ and vq∞, from fits

to our DNS data, and the predictions of our phenomenological model (Eqs. (B.13)

and (B.14)). Figure B.1(b) shows the temperature variation of α′. We cannot fit this

reliably to any functional form; however, we can infer that α′ is smaller than α in

magnitude.



Appendix C

C.1 Note on Units

The GP equation, which describes the dynamical evolution of the wave function

ψ(x, t) of a weakly interacting, 2D Bose gas at low temperatures, is

i~
∂ψ(x, t)

∂t
= − ~2

2m
∇2ψ(x, t)− µψ(x, t) + g2D|ψ|2ψ(x, t), (C.1)

where g2D is the effective interaction strength. As we have mentioned earlier, the

GP equation conserves the energy, given by the Hamiltonian

H =

∫

A
d2x
( ~2

2m
|∇ψ|2 + 1

2
g2D|ψ|4

)
, (C.2)

and the total number of particles N =
∫
A d

2x|ψ|2. We can use the Madelung trans-

formation to write ψ(x, t) =
√
ρ(x, t)/meiφ(x,t) and the total density is ρ∗ = N/A.

To obtain Eq. (3.1), we first divide Eq. (C.1) by ~ and define µ = µ/~, g = g2D/~;

we then set ~/2m = α0, with m = 1. In these units, the quantum of circulation is

h/m = 4πα0, the sound velocity is c =
√
g|ψ0|2/m =

√
gρ0, and the healing length is

ξ =
√

~2/2m|ψ0|2g =
√

2α2
0/ρ0g, where ρ0 = m|ψ0|2 is the condensate density. This

choice of units is slightly different from the choice we have made in Chapter 2 (see

AppendixA.1). We use these units in our numerical studies.

C.2 Advective real Ginzburg-Landau equation (ARGLE)

Compressible superfluid hydrodynamics, described by the GP equation, can lead,

in the presence of vortices, to regimes dominated by acoustic emission. To minimize

this acoustic emissions, we prepare our initial states by using a specialized scheme,

which we refer to as the advective-real-Ginzburg-Landau equation (ARGLE) [28].

The desired initial states are the large-time-asymptotic solutions of the ARGLE

∂ψ

∂t
= α0∇2ψ − g|ψ|2ψ + µψ − iuadv · ∇ψ − u2

adv

4α0

ψ; (C.3)
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and these states minimize the free-energy functional

FARGLE(ψ, ψ
∗) =

∫
d3x

(
α0

∣∣∣∣∇ψ − i
uadv

2α0
ψ

∣∣∣∣
2

+
1

2
g|ψ|4 − µ|ψ|2

)
; (C.4)

uadv is the imposed flow velocity.

Numerical implementation

We use the implicit-Euler method for time stepping in the ARGLE, i.e.,

ψ(t+∆t) =
ψ(t) +NL(t)∆t

1− L∆t
, (C.5)

where we suppress the spatial argument of ψ, L = α0∇2, and NL = (µ − g|ψ|2)ψ −
iuadv · ∇ψ − u2

adv

4α0
ψ. The field ψ at the (n+ 1) time step is given by

ψ̂n+1 =
ψ̂n +∆t(µ− g ̂|ψn|2ψn − i ̂uadv · ∇ψn − û2

adv

4α0
ψn)

1− (−α0k2)∆t
. (C.6)

We also use the Newton’s method to find both the stable and the unstable fixed

points of the above equation, which is equivalent to finding ψ∗, such that

F (ψ∗) ≡ ψ∗(t)− ψ∗(t+∆t) = 0. (C.7)

Every Newton step requires the solution, for δψ, of

δF

δψ
δψ = −F (ψ), (C.8)

which we obtain by an iterative bi-conjugate-gradient-stabilized method (BiCGSTAB) [29].

This method uses the direct application of [δF/δψ] over an arbitrary field φ, given

by

δF

δψ
φ =

−∆t

1− L∆t

[
Lφ+ g(2|ψ|2φ+ ψ2φ∗)− iuadv · ∇φ− (u2

adv/4α0)φ
]
. (C.9)

Preparation of a translating vortex-antivortex pair: ψpair

The steps involved in the preparation of ψpair are outlined below:

1. Initialize ψ(x, y) = exp(ix) for lmin < y < lmax and ψ(x, y) = 1 otherwise.

2. Evolve ψ using ARGLE, with uadv = 0, and allow the vortex-antivortex pair

generated to contract until it reaches the desired pair-length.

3. Evolve ψ obtained in step-2 by using ARGLE with uadv = ux̂, so that the con-

traction of the vortex-antivortex pair stops.
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4. Use Newton’s method, coupled with BiCGSTAB, to find the exact state of the

vortex-antivortex pair for the uadv in step-3 above. This Newton method is

used to speed up the convergence to the desired solution (because the ARGLE

procedure converges slowly).

Preparation of a vortex-lattice: ψlattice

The steps involved in the preparation of ψlattice are outlined below:

1. Initialize ψ = (λ1+ιλ2)
A

tanh
(

A√
2ξ

)
, where λ1 = 1√

γd
cosx, λ2 = 1√

γd
cos y, γd =

8/(4πα0), and A =
√
λ21 + λ22.

2. Evolve ψ by using ARGLE with uadv,x =
1
γd
sin(x) cos(y), uadv,y = − 1

γd
cos(x) sin(y).

3. Evolve ψ obtained in step-2 by using ARGLE, followed by Newton-BCGSTAB,

with uadv = 0 to find the exact solution.

For more details on the preparation of an assembly of vortices, we refer the

reader to Ref. [28].

C.3 Stochastic Ginzburg-Landau equation (SGLE)

The stochastic Ginzburg-Landau equation (SGLE) is

∂ψ

∂t
= PG

[
α0∇2ψ − gPG[|ψ|2]ψ + µψ − ivn · ∇ψ + ζ(x, t)

]
, (C.10)

where ψ is the wave function, g the interaction strength, µ the chemical potential,

and vn the counterflow velocity. ζ is a Guassian white noise satisfying

〈ζ(x, t)〉 = 0 (C.11)

and

〈ζ(x, t)ζ∗(x′, t′)〉 = Dδ(x− x′)δ(t− t′) (C.12)

with D = 1/(2α0β), where β = 1/(kBT ) (we set the Boltzmann constant kB = 1).

Numerical implementation

We solve the SGLE Eq. (C.10) along with the following, ad-hoc equation

dµ

dt
= −νNA (N −Nav), (C.13)

to control the number of particles N ; the parameter Nav controls the mean value of

N ; and νN governs the rate at which the SGLE equilibrates.
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The spatial Fourier-transform of Eq. C.10 gives

dψ̂

dt
= −α0k

2ψ̂ − g |̂ψ|2ψ + µψ̂ − iv̂n · ∇ψ + ζ̂ , (C.14)

where we have omitted the Galerkin projector PG for the notational simplicity. We

solve the SGLE by using a pseudospectral method with periodic boundary condi-

tions in space, an implicit-Euler scheme with time step ∆t, for time marching. The

discrete versions are

µn+1 = µn −∆t
µN

A (Nn −Nav) (C.15)

and

ψ̂n+1 =
ψ̂n +∆t(−g ̂|ψn|2ψn − i ̂vn · ∇ψn)

1 + (α0k2 − µn)∆t
+ dWζ (C.16)

where dWζ =
√
D(dA)−1/2ηi

√
dt, with dA = ∆x∆y and ηi are random variables that

we obtain from a normal distribution with zero mean and unit variance.



Appendix D

Low-temperature

phenomenological model

We present a phenomenological model to characterize the thermodynamic equilib-

rium properties of the low-temperature Bose gas. For the sake of completeness, we

repeat some of the material already covered in Chapter 2.

D.1 Standard results on the BKT transition

We can use the heuristic, energy-entropy argument to obtain a rough estimate of

the BKT transition temperature TBKT. In the XY model, this transition is studied

by using the Hamiltonian

HXY = −J
∑

<i,j>

cos(θi − θj), (D.1)

where < i, j > denotes nearest-neighbour pairs of sites, on a 2D square lattice, J

is the nearest-neighbour exchange coupling, and (θi − θj) is the angle between the

nearest-neighbour, XY spins on sites i and j. In the continuum limit, the above

Hamiltonian becomes, to lowest order in spatial gradients,

HXY =
J

2

∫
d2x(∇θ(x))2. (D.2)

By comparing Eq. (D.2) with the kinetic-energy term in the energy, we find that

J =
|〈ψ〉|2~2

m
=

ρΓ2

(2π)2
, (D.3)

where Γ denotes the Onsager-Feynman quantum of velocity circulation Γ = 4π~/2m =

h/m = κ. A rough estimate for the BKT transition temperature TBKT is given below:

T̃BKT =
πJ

2kB
=
π | 〈ψ〉 |2 ~2

2mkB
=

ρΓ2

8πkB
, (D.4)
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here T̃BKT denotes the estimate for TBKT that follows from an energy-entropy argu-

ment [10].

D.2 Low-temperature thermodynamical computations with

counterflows

We now develop an analytical framework, which is valid at low-temperatures T ≪
TBKT, that can be used to test some of the results of our DNS runs in the region of

complete thermalization. We calculate the equilibrium thermodynamic functions

for a weakly-interacting, 2D Bose gas, in the grand-canonical ensemble. In the

grand-canonical ensemble the probability of a given state is

P =
1

Ξ
e−β(H−µN−w·P), (D.5)

where Ξ is the grand partition function, β the inverse temperature, µ the chemical

potential,N the number of bosons, and P the momentum. The grand-canonical

potential is

Ω = −β−1 log(Ξ); (D.6)

and the mean energy E and number of particles N are

N = −∂Ω
∂µ

, (D.7a)

P = − ∂Ω

∂w
, (D.7b)

E =
∂Ω

∂β
+ µN +w ·P. (D.7c)

We adapt to 2D the 3D study of Ref. [9], expand ψ in terms of Fourier modesAk, and

obtain Ω as the sum of the saddle-point part Ωsp and ΩQ, the deviations from the

saddle point that are quadratic in Ak. We write Ω = Ωsp+ΩQ, where Ωsp = −Aµ2/2g

and

ΩQ = − A
2πβ~2

∫ pmax

0

(
log(

2m

β
√
p4 + 4mp2µ

) +
2m2w2(5p2 + 6m2w2 + 20mµ)

15(p2 + 4mµ)2

)
pdp,

(D.8)

where w = wx̂. We can also calculate the condensate depletion δN , where the

particle number N = N0 + δN and N0 is the number of particles in the k = 0 mode

as follows:

δN =

∫ pmax

0

mpA
(
p−2 + 1

p2+4mµ

)

2πβ~2
dp+O(w2). (D.9)
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The integrals in Eqs. (D.8) and (D.9) can be performed analytically, but, in contrast

to the 3D case where the primitives are zero at p = 0, the 2D primitive for Ωph

is finite at p = 0 and for δN it is infra-red (I.R.) divergent. By subtracting the

I.R. finite and divergent terms from ΩQ and δN , respectively, we get the following

expressions, in 2D, in the thermodynamic limit A → ∞:

Ω = −µ
2A
2g

− p2maxA
4πβ~2

+
mµA log(1 + p2max

4mµ
)

2πβ~2
−
p2maxA log( 2m

β
√

p4max+4mµp2max

)

4πβ~2

−
m2w2A log(1 + p2max

4mµ
)

6πβ~2
+

m3w4p2maxA
20πµβ~2p2max + 80πmµ2β~2

(D.10)

and

δN = mA
log(1 + p2max

4mµ
) + log(p

2
maxA
~2

)

4πβ~2
+O(w2). (D.11)

By using the thermodynamic relations Eq. (D.7), we obtain

N =
µA
g

−
mA log(1 + p2max

4mµ
)

2πβ~2
+O(w2), (D.12)

E =
µ2A
2g

+
p2maxA
4πβ~2

−
mµA log(1 + p2max

4mµ
)

2πβ~2
+O(w2), (D.13)

and

Px = m2wA
log(1 + p2max

4mµ
)

3πβ~2
+O(w3). (D.14)

The expression for Px is different from the one that can be derived from the density

corresponding to the condensate depletion mwδN ; this allows us to define ρn =

Px/(wA).

D.3 Low-temperature results at a given density

We next determine the chemical potential µ, which fixes the total density ρ =

mN/A at a given value, by solving the equation

ρ− mµ

g
+
m2 log(1 + p2max

4mµ
)

2πβ~2
= 0; (D.15)

at β = ∞, i.e., zero temperature (subscript 0) we obtain

µ0 =
g ρ

m
; (D.16)

to order β−1 we get

µ = µ0 + δµ, (D.17)
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where

δµ =
mg (4gρ2 + ρp2max) log(1 +

p2max

4gρ
)

m2p2max + 2πβ~2ρp2max + 8πβ~2gρ2
. (D.18)

We insert µ from Eq. (D.17) into Eq. (D.11), define the change in density δρ =

mδN/A, use the energy E from Eq. (D.13), and then expand to order β−1 to obtain

δρ =
m2
(
log(1 + p2max

4gρ
) + log(p

2
maxA
~2

)
)

4πβ~2
, (D.19)

and

E =
gρ2A
2m2

+
p2maxA
4πβ~2

. (D.20)

We use Eq. (D.14) and the definition ρn = Px/(wA) to obtain

ρn =
m2 log(1 + p2max

4gρ
)

3πβ~2
. (D.21)

By using Eq. (D.4) and ρ = m | 〈ψ〉 |2, we obtain

β̃BKT =
1

kBT̃BKT

=
2m2

πρ~2
, (D.22)

which we can use along with Eq. (D.19) to relate the condensate relative depletion

δρ/ρ to β/β̃BKT, where β = 1/(kBT ) and kB is the Boltzmann constant, as given

below:

δρ

ρ
=
β̃BKT

8β
log



p2max

(
1 + p2max

4gρ

)
A

~2


 . (D.23)

Similarly, the normal-fluid density fraction is

ρn
ρ

=
β̃BKT

6β
log

(
1 +

p2max

4gρ

)
. (D.24)

We use this low-temperature result Eq. (D.23) to estimate the inverse-temperature

scale βBKT, at which the depletion of the k = 0 condensate mode becomes signifi-

cant for a finite-size system with N2
c collocation points (which fixes the maximum

momentum pmax); in particular, we can solve Eq. (D.23), for δρ/ρ = 1, to obtain

βBKT

β̃BKT

=
1

8
log



p2max

(
1 + p2max

4gρ

)
A

~2


 . (D.25)

By making the replacements that correspond to defining ~, m, and g in terms of

c and ξ, pmax → ~kmax, ~ →
√
2cmξ, and g → c2m2/ρ, we can rewrite Eq. (D.23),

Eq. (D.24), and Eq. (D.25) as

δρ

ρ
=
β̃BKT

8 β
log

(
k2maxA (1 +

kmax
2 ξ2

2
)

)
, (D.26)



D.3. Low-temperature results at a given density 120

ρn
ρ

=
β̃BKT

3 β
log

(
1 +

kmax
2 ξ2

2

)
, (D.27)

and
βBKT

β̃BKT

=
1

8
log

(
k2maxA (1 +

kmax
2 ξ2

2
)

)
, (D.28)

respectively.
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Chapter 4

Particles and Fields in Superfluids: Insights from the

Two-dimensional Gross-Pitaevskii Equation

In this Chapter we study the dynamics of active particles in two-dimensional su-

perfluids at T = 0, for a variety of initial configurations, by carrying out extensive

direct-numerical-simulations of the two-dimensional, Galerkin-truncated Gross-Pitaevskii

equation. Our study elucidates the interplay of particles and fields, in both simple

and turbulent flows.

4.1 Introduction

The transport of particles by turbulent fluids is a problem of central importance in

turbulence [1,2]. Not only is such transport of relevance for fundamental questions

in turbulence [1, 2], but it also has implications for a geophysical, atmospheric,

astrophysical, and industrial problems [3–9]. The superfluid counterpart of this

problem, which has been studied occasionally over several decades [10–12], has

received renewed attention recently in the wake of experiments [13–15] that have

used particles to track quantum vortices in superfluid turbulence. We initiate a

study of particles in superfluids by developing a new algorithm for particle motion

in a superfluid, which is described by the Gross-Pitaevskii equation [16, 17]. The

particles we use are active, i.e., they are not only advected by the flow, but they

also act back on it; furthermore, they interact with each other, not only by virtue of

superfluid-mediated, effective interactions, but also by repulsive interactions that

rise rapidly as the particles approach each other.

Our study elucidates the interplay of particles and fields in superfluids, in both

simple and turbulent flows. We carry out extensive direct numerical simulations

(DNSs) of this interplay for the two-dimensional (2D) Gross-Pitaevskii (GP) equa-

tion. Our work yields several new and exciting results, which we summarize before

we present the details of our study: At the one-particle level we explore, for light,
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neutral, and heavy particles, the nature of its dynamics in the superfluid, when a

constant external force acts on the particle; we find that the particle motion can be-

come chaotic, even if the superfluid is not turbulent. We have also studied the inter-

action of the particle(s) with vortices, where we observe that the dynamics depends

sensitively on the particle characteristics. We extend these studies to the case of

two particles, where we show the existence of an effective, superfluid-mediated,

attractive interaction between the particles. Moreover, we introduce a short-range

repulsive interaction between particles and show how collisions of heavy, neutral,

and light particles are different. Here, we find that, at low values of the range of

the repulsive force, the collisions are completely inelastic, with coefficient of resti-

tution equal to zero; as we increase the range of the repulsive force the coefficient

of restitution becomes finite at a critical point, and finally attains values close to

unity, when the collisions are elastic. Furthermore, we find that many-particle

collision dynamics also depends on the range of the repulsive force, where its low

value results in the formation of a many-particle bound state. At large values of

the range of the repulsive force, we obtain chaotic many-particle collision dynam-

ics. Our studies of the assemblies of particles and vortices demonstrates that their

dynamics show rich, turbulent spatiotemporal evolution.

The remaining part of this chapter is organized as follows. In Sec. 4.2 we de-

scribe the model, initial conditions, and numerical methods we use. Section 4.3 is

devoted to our results. We end with conclusions in Sec. 4.4.

4.2 Model, Initial Conditions, and Numerical Methods

To study particle dynamics in superfluids, we use the following Galerkin-truncated

GP equation (henceforth TGPE) for the spatiotemporal evolution of the complex,

classical, wave function ψ(x, t) describing the superfluid:

i
∂ψ(x, t)

∂t
= PG

[(
−α0∇2 + gPG[|ψ|2]− µ+

∑No

i=1
VP(x− qi)

)
ψ(x, t)

]
, (4.1)

where VP(x) is the potential used to represent the particles, g the effective interac-

tion strength, PG the Galerkin projector, i.e., PG[ψ̂(k)] = θ(kmax − k)ψ̂(k), with ψ̂ the

spatial Fourier transform of ψ and θ(·) the Heaviside function, µ the chemical po-

tential, and No the total number of particles included in the study. In our units the

quantum of circulation is 4πα0. We assume Newtonian dynamics for the particles

and their equation of motion is

moq̈i = fo,i + Fext,i, (4.2)
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where mo is the particle mass, Fext,i the external force acting on the i-th particle,

and qi the particle position vector (the overhead dot represents differentiation with

respect to time). The force exerted by the superfluid on the particle, fo,i is given by

fo,i = 2α0

∫

A
|ψ|2∇VP(x− qi)d

2x, (4.3)

which, in our Galerkin-truncation scheme, becomes

fo,i = −2α0

∫

A

[
ψ∗PG[VP(x− qi)∇ψ] + ψPG[VP(x− qi)∇ψ∗]

]
d2x, (4.4)

where A = L2 is the area of our 2D, periodic, computation domain of side L. We

also study the dynamics of two or more inertial particles in the superfluid, so we

introduce a short-range, repulsive two-particle potential USR, to prevent particles

from passing through each other. The form of this repulsive potential is

USR =
∆Er12SR
r12

, (4.5)

where r is the separation between two particles; we treat ∆E and rSR as parameters

in our study. We treat the superfluid and particles together as a single system; and,

in the absence of any external applied force, the total energy E of this system is

conserved. The total energy of the system is

E = Efield + Eo + ESR, (4.6)

where the energy contained in the field Efield, kinetic energy of the particles Eo, and

energy from the short-range repulsion ESR are defined, respectively, as follows:

Efield = 2α0

∫

A

[
α0|∇ψ|2 +

1

2
g|ψ|4 − µ|ψ|2 +

∑No

i=1
VP(x− qi)|ψ|2

]
d2x; (4.7a)

Eo =
∑

i=1

1

2
moq̇

2
i ; (4.7b)

ESR =
1

2

∑No,No

i,j,i 6=j
USR,i,j. (4.7c)

The dynamical evolution of the coupled set of Eqs. (4.1) and (4.2) conserves the

total momentum P of the system and the total number N of bosons, constituting

the field. These are

P(t) = P(t = 0) + Fextt = 2α0

∫

A
ℑ(ψ∗∇ψ)d2x+

∑No

i=1
moq̇i; (4.8a)

N =

∫

A
|ψ|2d2x. (4.8b)

We use the Madelung transformation ψ =
√
ρ(x, t) exp(iφ) to obtain a description

of our system in terms of hydrodynamical variables, namely, the density ρ and the
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velocity v = 2α0∇φ, where φ(x, t) is the phase of ψ(x, t). In our units the sound

velocity c =
√
gρ∗, the healing length ξ =

√
2α2

0/(gρ
∗), and the total density ρ∗ =

N/A. In our study we represent a particle in the Eq. (4.1) by the Gaussian potential

VP(r) = Vo exp(−r2/(2d2p); (4.9)

Vo is a measure of the strength of the potential and dp its width. The inclusion of a

particle in the superfluid results in the displacement of a superfluid with area equal

to the particle area, whose mass we represent by mf . We use the ratio M ≡ mo/mf

to define three types of particles: (1) heavy (M > 1), (2) neutral (M = 1), and (3)

light (M < 1).

We perform a systematic, pseudospectral, direct numerical simulation (DNS) of

the spatiotemporal evolution of the 2D, Fourier-truncated, GP equation Eq. (4.1)

coupled with the equations of motion of the particles Eq. (4.2). To achieve this,

we have developed a parallel, MPI code in which we discretize ψ(x, t) on a square

simulation domain of side L = 2π with N2
c collocation points. We use periodic

boundary conditions in both spatial directions and a fourth-order, Runge-Kutta

scheme, with time step ∆t, to evolve equations Eq. (4.1) and Eq. (4.2) in time. We

evaluate the linear terms in Eq. (4.1) in Fourier space and the nonlinear term in

physical space; for the Fourier transform operations we use the FFTW library [18].

We use the dealiasing rule of Ref. [19] in our pseudospectral DNSs of this TGPE,

where the maximum wave number kmax = 2/3×Nc/2.

In order to understand the interplay of particles and fields in superfluids, we

have classified the initial configurations which we use into seven categories, with

the aim of studying the following:

1. ICP1: Initial configurations with one particle on which a constant, external

force acts for the duration of the DNS.

2. ICP2: Initial configurations with two particles and one of the following. (a) The

particles are stationary and the repulsive interaction is absent; (b) the parti-

cles are stationary and the repulsive interactions are included; (c) a constant,

external force acts on the particles, for a short duration, so as to accelerate

them before a head-on collision.

3. ICP3: Initial configuration to study many-particle dynamics, for the case of five

particles with (a) low rSR, (b) large rSR.

4. ICP4: Initial configuration to study the interaction of a single particle, placed

in front of a translating vortex-antivortex pair.



4.3. Results 128

5. ICP5: Initial configuration to study the interaction of two particles, placed in

front of a translating vortex-antivortex pair;

6. ICP6: Initial configuration with a single particle moving in the presence of

counter-rotating vortex clusters.

7. ICP7: Initial configuration with four particles in the presence of counter-rotating

vortex clusters.

The compressible nature of the superfluid GP dynamics, in the presence of particles

and vortices, can lead to regimes dominated by acoustic radiations; thus, to mini-

mize the acoustic emission, we prepare our initial states for ICP1 − ICP7 by using

a specialized scheme, which uses the advective-Real-Ginzburg-Landau equation

(ARGLE)

∂ψ

∂t
= α0∇2ψ − g|ψ|2ψ + µψ −

∑No

i=1
VP(x− qi)ψ − iuadv · ∇ψ − u2

adv

4α0

ψ, (4.10)

where uadv is the applied advective velocity field (for more details we refer to

Ref. [20]).

In all our DNS runs, the average total density ρ∗ = 1, the total number of col-

location points N2
c = 1282, the healing length ξ = 1.44∆x, ∆x = 2π/Nc, and the

quantum of circulation α0 ≃ 0.05 are kept fixed. In the DNS runs with initial con-

figurations ICP1-ICP2 we take the speed of sound c = 1, whereas, in the DNS run

with ICP7 c = 2. By varying values of c we can control the number of vortices in a

cluster of vortices [20]. We take the strength of the particle potential V0 = 10g and

its width dp = 1.5ξ. In the short-range repulsive potential, ∆E = 0.062, which we

determine by using ARGLE, as the difference between the energies of the states

in which (a) two particles are on top of each other and (b) they are far apart (the

separation between the two particles r = 4π/5).

4.3 Results

We organize the presentation of our results as follows. In Sec. 4.3.1 we present

the results from the dynamics of a single particle. Section 4.3.2 is devoted to two-

particle dynamics and Sec. 4.3.3 to many-particle-collision dynamics. Sections 4.3.4

and 4.3.5 describe the interaction of a translating vortex-antivortex pair with a

single particle and two particles, respectively. In Sec. 4.3.6 we present the results

from the study of the motion of a single neutral particle in the presence of counter-

rotating vortex clusters. Section 4.3.7 is devoted to the dynamics of four neutral

particles in the presence of counter-rotating vortex clusters.
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4.3.1 Single particle dynamics: Constant external force on the particle

We study the dynamics of a single particle in the superfluid by using the initial

configuration ICP1, where an external force acts on the particle, for heavy, neutral,

and light particles. We generate the initial configuration ICP1 by (a) preparing an

initial state with a single particle, represented by a potential VP Eq. (4.9), at rest

using the ARGLE Eq. (4.10); (b) we then use the initial state prepared in (a) in the

TGPE Eq. (4.1). We use Fext = F0x̂ in the Eq. (4.2), where F0 is constant in time. We

now describe the dynamics of the heavy, neutral, and light particles for the initial

configuration ICP1.

Heavy particle: We apply an external force Fext = 0.02x̂ on the heavy par-

ticle. In Fig. 4.1 (a) we show the time evolution of the x- and the y-components

of the particle velocity uo,x (purple curve) and uo,y (green curve), respectively; the

particle starts to move from rest through the superfluid, without disturbing the

latter until a critical velocity uc ≃ 0.47 is reached at t = 2344. When the particle

velocity ≃ uc, a vortex-antivortex pair emerges, with a positive vortex at the top

and a negative vortex at the bottom of the particle, but both still attached to, and

co-moving with, the particle; the particle slows down slightly. Subsequently, the

vortex-antivortex pair is detached from the particle; it is oriented perpendicular

to and moves along the x-direction at a much reduced velocity compared to the

particle. Given its large velocity, the particle moves ahead of the slowly moving

vortex-antivortex pair; and, because of the periodic boundary conditions we use, it

comes back and approaches the vortex-antivortex pair from behind. The particle

passes through the vortex-antivortex pair, during which passage the positive and

the negative vortices glide, repectively along the upper- and lower-half of the par-

ticle circumference; such an interaction is also associated with an initial increase

that is followed by a decrease in the particle velocity because of the reinforcing

nature of the velocity field in the region in between the vortex and the antivortex

that constitute the pair. Moreover, this interaction of the particle and the vortex-

antivortex pair leads to the generation of sound waves. The particle subsequently

sheds another vortex-antivortex pair and now interacts with two vortex-antivortex

pairs; this is accompanied by even greater emission of sound waves than in the

case of one vortex-antivortex pair. Afterwards, the presence of sound waves during

the interaction of the particles with the vortex-antivortex pairs, results in deflec-

tions of the latter from their trajectories; at the same time, small fluctuations are

induced in the particle velocity (see Fig. 4.1 (a)). The subsequent motions of the

particle and the vortex-antivortex pairs become complicated. Many more vortex-

antivortex pairs are shed by the particle; and at several instances of the shedding
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of vortex-antivortex pair one of the vortices is trapped on the particle for a short

duration of time; now the vortex-antivortex pairs are emitted at uo,x > uc. More-

over, the vortices and antivortices frequently annihilate and produce sound waves

during this process. Figure 4.1 (d) shows that the force exerted by the superfluid

on the particle (see Eq. (4.3)) exhibits large fluctuations, after the critical velocity

is reached. In Fig. 4.1 (g) we plot the power spectra of the time series of the Carte-

sian components fo,x (sky-blue curve) and fo,y (brown curve); these show that many

frequencies appear in these spectra. The Video M1 illustrates the spatiotemporal

evolution of a forced heavy particle in a superfluid. This video, the time series of

uo,x, uo,y, fo,x, and fo,y and their power spectra (Figs. 4.1 (a)-(i)) show that, after the

first vortex-antivortex pair has been emitted, the motion of the particle can be tem-

porally chaotic, for heavy particle and light particles. This can be seen most easily

from the time series of fo,x and fo,y (Figs. 4.1(d) and (f)) and their power spectra

(Figs. 4.1(g) and (i)). By contrast, the temporal evolution of a neutral particle is

periodic (see, e.g., the single peak in the power spectrum of Fig. 4.1 (h).

Neutral particle: To study the dynamics of a neutral particle in the superfluid,

we use the initial configuration ICP1. We apply an external force Fext = 0.01x̂ on

the particle. In Figs. 4.2 (a)-(i) we show via pseudocolor plots the spatiotemporal

evolution of the field |ψ(x, t)|2; the particle appears as a large blue patch on these

plots. The particle accelerates under the influence of the external force and its ve-

locity reaches a maximum at t ≃ 33, before starting to decrease (see Fig. 4.1 (b));

this maximum of velocity is also the critical velocity uc ≃ 0.47, where a vortex-

antivortex pair is formed. Figure 4.2 (a) shows the vortex-antivortex pair still at-

tached to the particle at t = 38, as an extension along the y-direction of the particle

(blue patch). Subsequently, the vortex-antivortex pair is detached from the particle

(Fig. 4.2 (b)); but the particle and the vortex-antivortex-pair assembly, henceforth

PVA complex, becomes unstable with respect to the motion transverse to the direc-

tion of Fext at t ≃ 54 and oscillatory modes are excited, as we show in Fig. 4.1 (b)

where the Cartesian components uo,x and uo,y of the particle velocity exhibit mod-

ulated oscillations. In Fig. 4.1 (h), the power spectra of both uo,x and uo,y show

one large peak and two or three small peaks; the former is associated with main

temporal oscillation and the latter with the modulation. Figure 4.1 (e) shows that

similar oscillations are present in the Cartesian components of the force exerted by

the superfluid on the particle. As a result of this instability, at t ≃ 64 the particle

is trapped on the positive (upper) vortex (Fig. 4.2 (c)); this is accompanied by an

intense emission of sound waves. The particle trapped on the positive vortex and

the negative (lower) vortex move together, with both aligned roughly perpendicular
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Figure 4.1: Plots of the Cartesian components uo,x and uo,y of the particle velocity uo for (a) heavy

(M = 374, Fext = 0.02x̂), (b) neutral (M = 1, Fext = 0.01x̂), and (c) light (M = 0.0374, Fext =

0.01x̂) particles; (d), (e), and (f) are the analogs of (a), (b), and (c), respectively, for the Cartesian

components fo,x and fo,y of the force fo on the particle. Power spectra, denoted generically by S(ω),

of the time series of uo,x , uo,y, fo,x, and fo,y are plotted versus the angular frequency ω for (g) heavy

(M = 374), (b) neutral (M = 1), and light (M = 0.0374) particles.
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Figure 4.2: Spatiotemporal evolution of the field |ψ(x, t)|2 shown via pseudocolor plots, illustrating the dy-

namics of a neutral particle, when a constant external force Fext = 0.01x̂ acts on it (initial configuration ICP1).

The particle appears as a large blue patch and the vortices as blue dots (for details see text, subsection 4.3.1).
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to the direction of motion (Fig. 4.2 (d)); the separation between the two increases,

principally because the positive vortex moves away and takes the trapped particle

along with it. Because of our periodic boundary conditions, the positive vortex (and

the particle trapped by it) come back from below (the y-direction). The direction

of the velocity field, in the small region in between the particle and the vortex,

generated by the vortex-antivortex pair, is reversed (from +x̂ to −x̂). When the

negative vortex and the positive vortex (and the trapped particle) are close enough

to each other, that the field generated by the pair is strong enough that the PVA

complex, traversing in the +x̂ direction, reverses its direction of motion at t ≃ 350.

When the two vortices are very close together (see Fig. 4.2 (f)), they annihilate,

while the particle moves predominantly in the −x̂ direction. Soon thereafter the

acceleration, because of the external force, reverses the direction of motion once

again and the particle begins to move predominantly in the x̂ direction as we show

in Fig. 4.2 (g) at t = 390. The particle velocity increases, reaches a maximum

value uo,x = 0.57 > uc, and again a vortex-antivortex pair is formed, initially this

pair is attached to the particle. At t ≃ 434 the particle gets trapped on the nega-

tive (lower) vortex and the cycle of particle and vortex motions, described above,

is repeated again (see Fig. 4.1 (b) for t & 434 and Fig. 4.2(i)). Video M2 gives the

complete spatiotemporal evolution of the particle and |ψ(x, t)|2.
Light particle: We study the dynamics of the light particle in the superfluid

by using the initial configuration ICP1; the particle is accelerated by applying an

external force Fext = 0.01x̂ on it. Figures 4.3 (a)-(i) and Video M3 summarize the

spatiotemporal evolution of the field |ψ(x, t)|2 for the light-particle case. A compar-

ison of the x-component of the particle velocity uo,x (purple curve) in Figs. 4.1 (b)

and (c), coupled with a comparison of the field |ψ(x, t)|2 in Figs. 4.2 and 4.3, shows

that the dynamics of the light particle is similar to, but not exactly the same as

that of the neutral particle. A major feature which distinguishes their dynamics is

the presence of a broad range of frequencies in the power spectra of uo and fo of the

former; this indicates that the motion of the light particle is chaotic in contrast to

that of the neutral particle whose dynamics is periodic in time.

The chaotic nature of the particle dynamics is enhanced when we increase the

amplitude of the external force acting on the particle, as we show in Fig. 4.4; in

particular now the power spectra of the Cartesian components of uo and fo have a

broad range of frequencies for all the three types of particles. We can understand

the motion of the particles by using the concept of the hydrodynamical mass (or

effective mass) m∗ = ∂Pext/∂uo (Pext = Fextt). To begin with there is no drag-force on

the particle, but the particle still transfers momentum to the fluid by virtue of the
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Figure 4.3: Spatiotemporal evolution of the field |ψ(x, t)|2 shown via pseudocolor plots, illustrating the dy-

namics of a light particle, when a constant external force Fext = 0.01x̂ acts on it (initial configuration ICP1).

The particle appears as a large blue patch and the vortices as blue dots (for details see text, subsection 4.3.1).
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Figure 4.4: Plots of the Cartesian components uo,x and uo,y of the particle velocity uo for (a) heavy

(M = 374, Fext = 0.1x̂), (b) neutral (M = 1, Fext = 0.05x̂), and (c) light (M = 0.0374, Fext =

0.05x̂) particles; (d), (e), and (f) are the analogs of (a), (b), and (c), respectively, for the Cartesian

components fo,x and fo,y of the force fo on the particle. Power spectra, denoted generically by S(ω),

of the time series of uo,x , uo,y, fo,x, and fo,y are plotted versus the angular frequency ω for (g) heavy

(M = 374), (b) neutral (M = 1), and light (M = 0.0374) particles.
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Figure 4.5: Pseudocolor plot of the field |ψ(x, 0)|2 showing two particles, separated by a distance

r0 = 7ξ, at rest (initial configuration ICP2(a)).

increase in its effective mass; this becomes very large (ideally infinity) at uo = uc,

where a vortex-antivortex pair is formed. Note that when a vortex-antivortex pair

is formed, the plot of uo,x versus time has a maximum (see Fig. 4.1(b)), i.e., the accel-

eration in the x direction vanishes even though the force Fext is nonzero. Therefore,

the effective mass m∗ diverges when the vortex-antivortex pair is created. After

this, m∗ becomes negative and the particle slows down, this is more apparent in

the cases of the neutral and the light particles than for a heavy particle.

4.3.2 Two-particle dynamics

In this Section we present the results from our study of the dynamics of two parti-

cles in the superfluid; first we describe the superfluid-mediated interaction, which

is an effective attractive interaction between the particles. We then study head-on

collision between two particles. The particles that we consider here are neutral.

Superfluid-mediated attractive interaction between particles

In Fig. 4.5 we show the initial configuration, which we use to demonstrate the

existence of an effective, superfluid-mediated, attractive interaction between the

particles; we prepare two particles, separated by a distance r0 = 7ξ, at rest in the

superfluid, by specifying the locations of the particle potentials VP(xi) Eq. (4.9) in

the ARGLE Eq. (4.10). The above initial configuration for two neutral particles is

used in the TGPE Eq. (4.1). We study the following two cases: SR, repulsive inter-

action between the particles, is either (1) absent or (2) present. Figures 4.6 (a) and

(b) show the displacement of the two particles, in units of ξ, with respect to the cen-
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ter of the simulation box (π, π); the particles are initially placed at the coordinates

(π− r0/2, π)/ξ and (π+ r0/2, π)/ξ and their subsequent motion is tracked by follow-

ing the purple curve (particle 1) and the green curve (particle 2), respectively. If

there is no SR repulsion between the particles and they are released from rest, the

two particles are accelerated towards each other if r0 is sufficiently small (r0 . 10ξ).

When their centers are very close to or on top of each other, their respective veloc-

ities exceed the critical velocity uc. However, the moment they cross each other,

their velocities suddenly start to decrease and they are slowed-down until they

come to rest; once again, the two particles start to move towards each other and

their velocities reach maxima uo,x < uc, when they are on top of each other. In the

course of this sloshing motion of the particles, a large amount of acoustic energy is

produced; moreover, the particles exchange energy with the superfluid, as we show

in Fig. 4.7 (a), where δEfield = Efield(t)− Efield(0) (purple curve) is the energy change

of the superfluid and Eo (green curve) the total kinetic energy of the particles; thus

the energy for the motion of the two particles is supplied by the superfluid. This

oscillatory motion of the particles continues but is damped (see Figs. 4.6 (a) and (c)

and Fig. 4.7 (a)) because of the continued loss of energy, in the form of sound waves,

thus, the particles form a bound pair. The Video M4 illustrates the sloshing motion

of the two neutral particles in the absence of SR, repulsive interaction.

In Fig. 4.6 (b) we show the displacements of the two particles in the presence

of the SR repulsion; when they are released from rest, the two particles accelerate

towards each other, stop upon collision, when the separation between them r ≃ rSR,

and then their direction of motion is reversed. The particles are unable to escape

to infinity, as they are again pulled back and undergo multiple collisions; these are

accompanied by the production of sound waves. Therefore, this inelastic collision

between the two particles leads to the formation of a bound pair, even in the pres-

ence of the SR repulsion (for given ∆E and rSR in Eqs. (4.5)). The Video M5 summa-

rizes the collision dynamics of the two particles in the presence of SR, repulsion,

when they are released from rest. Figure. 4.7 (b) shows the exchange of energy

between the different energy components, here we plot versus time the change in

superfluid energy δEfield = Efield(t)−Efield(0) (purple curve), the total kinetic energy

of the particles Eo (green curve), and the SR-repulsion energy ESR (sky-blue curve).

To characterize the superfluid-mediated, effective, attractive potential between

the particles, we perform a series of simulations, in which we vary the initial dis-

tance between the two particles and obtain the minimum-energy states by using

the ARGLE Eq. (4.10), in the absence of SR repulsive interaction. In Fig. 4.8 we
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Figure 4.6: Plots versus time t of the displacement δqo,x/ξ of the particles Pt : 1 (purple curve) and Pt :

2 (green curve), with respect to the center of the simulation box (π, π), when the SR-repulsive interaction

between the particles is (a) absent (ICP2(a)) and (b) present (ICP2(b)). Plots of uo,x versus t for the particles

Pt : 1 (purple curve) and Pt : 2 (green curve), when the SR-repulsive interaction between the particles is, (c)

absent (ICP2(a)) and (d) present (ICP2(b)).
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Figure 4.7: Plots versus time t of the energy components δEfield = Efield(t)−Efield(0) (purple curve), Eo (green

curve), ESR (sky-blue curve), when the SR-repulsive interaction between the particles is (a) absent (ICP2(a))

and (b) present (ICP2(b)).

0 5 10 15 20

0.25

0.3

0.35

r/ξ

U
A

0.2 0.4 0.6 0.8 1.0

0.18

0.20

0.22

0.24

0.26

Figure 4.8: A Plot of UA versus r/ξ, from our DNS run. The inset shows the same plot versus r and with UA

calculated from the Thomas-Fermi approximation (Eq. (4.14)).
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plot the energy

UA = 2α0

∫

A

[
α0|∇ψ|2+

1

2
g|ψ|4−µ|ψ|2+

∑No

i=1
VP(x−qi)|ψ|2

]
d2x+2α0(

1

2g
µ2A) (4.11)

as a function of the separation between the particles r/ξ. The potential ∆UA =

UA(r) − UA(r = ∞) is negative, for small r, and vanishes in the limit r/ξ → ∞;

this shows the existence of an effective, superfluid-mediated, attractive interaction

between the particles.

We can obtain a rough estimate of the energy UA in the Thomas-Fermi (TF)

approximation, where, by neglecting the kinetic energy term in the TGPE Eq. (4.1),

we can write

|ψ(x)|2 = (µ− VP)θ(µ− VP)

g
, (4.12)

where

VP =
∑No=2

i=1
VP(x− qi), (4.13)

and θ is the Heaviside function that ensures |ψ|2 > 0. In this approximation,

UTF
A = 2α0

∫

A

[
µ2 − (µ− VP)

2θ(µ− VP)

2g

]
d2x, (4.14)

which we plot in the Fig. 4.8 (inset). A comparison of Fig. 4.8 and the inset shows

that the values of UTF
A are in good agreement with those obtained from our DNS

data.

Head-on collisions

The schematic diagram in Fig. 4.9 outlines the procedure, which we use to study

the head-on collision between two particles. By using the ARGLE Eq. (4.10) we

prepare an initial state with two stationary particles Pt : 1 and Pt : 2 at the coor-

dinates (π/2, π) and (3π/2, π), respectively. We use this initial configuration in the

TGPE Eq. (4.1) and apply the external forces Fext = 0.01x̂ and Fext = −0.01x̂ on the

particles Pt : 1 and Pt : 2, respectively, so as to accelerate them; and then we turn

off Fext at t0 = 6 (red vertical line). We study the head-on collision between the

neutral particles, by varying the range rSR of the SR repulsive interaction between

the two particles, while keeping all the other parameters fixed.

In Figs. 4.10 (a) and (b) we show the trajectories of the two particles Pt : 1 and

Pt : 2 undergoing a head-on collision by using solid and dashed lines, respectively.

We use the following colors to indicate the values of rSR: (1) rSR = 1.5ξ (purple),

(2) rSR = 6.5ξ (green), (3) rSR = 7.0ξ (sky-blue), (4) rSR = 8.0ξ (brown). We follow

the same line-types and color-codes in Figs. 4.10 (c) and (d) to plot versus t the
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Figure 4.9: Schematic diagram outlining the initial configuration and the procedure, which we use to study

the head-on collision between two particles (blue discs).

x-components of the velocities of the two particles. In Figs. 4.11 (a), (b), (c), and

(d) we show the different energy components versus time for rSR = 1.5ξ, rSR = 6.5ξ,

rSR = 7.0ξ, and rSR = 8.0ξ, respectively; here δEfield = Efield(t) − Efield(t0) (purple

curve) is the energy change of the superfluid, Eo (green curve) the total kinetic

energy of the particles, and ESR (sky-blue curve) the SR-repulsion energy.

For rSR = 1.5ξ, the collision between the two neutral particles is completely

inelastic; they form a bound pair and the mean separation between their centers

fluctuates around r ≃ rSR (see Fig. 4.10(a), purple curves); the time average of the

velocity of the particles is zero, after the collision (see Fig. 4.10(c), purple curves).

Moreover, Fig. 4.11 (a) shows that, for this completely inelastic collision, initially,

as the particles approach each other, the Eo shoots up at the cost of the δEfield

and, thereafter, the energy exchanges are small; the subsequent exchanges occur

between ESR and δEfield, whereas the Eo remains close to zero. Figure 4.10 (a)

(green curves) shows that at rSR = 6.5ξ the two particles rebound, with small,

non-zero, mean velocities (see Fig. 4.10(c), green curves); the nature of the energy

exchange between the different components is shown in Fig. 4.11 (b); at the time

of the collision, ESR shoots up at the combined cost of δEfield and Eo. After the

collision, most of the energy is transfered to the fluid and the particles have a

small kinetic energy. For higher values of, e.g., rSR = 7.0ξ and rSR = 8.0ξ, the head-

on collision between neutral particles is nearly elastic and the particles rebound

with velocities close to their values at incidence (see Fig. 4.10 (b) and (d)); as a

consequence, the time averaged values of Eo before and after the collision (see
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Figure 4.10: Head-on collisions between two neutral particles (initial configuration ICP2(c)): (a) particle

trajectories shown via plots of qo,x versus time and rSR=1.5ξ (purple curve) and rSR=6.5ξ (green curve); (b)

particle trajectories shown via plots of qo,x versus time and rSR=7.0ξ (sky-blue curve) and rSR=8.0ξ (brown

curve); (c) uo,x versus time for rSR=1.5ξ (purple curve) and rSR=6.5ξ (green curve); (d) uo,x versus time for

rSR=7.0ξ (sky-blue curve) and rSR=8.0ξ (brown curve).
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Figure 4.11: Head-on collisions between two neutral particles (initial configuration ICP2(c)): Plots versus

time t of the energy components δEfield = Efield(t) − Efield(t0) (purple curve), Eo (green curve), ESR (sky-blue

curve) for (a) rSR = 1.5ξ; (b) rSR = 6.5ξ; (c) rSR = 7.0ξ; (d) rSR = 8.0ξ. The external force driving the particles

is turned off at t0 = 6.

Figs. 4.11 (c) and (d), green curves) are comparable to each other. The Videos

Video M6 and Video M7 illustrate the collision dynamics of two neutral particles

for rSR = 1.5ξ and rSR = 7.0ξ, respectively.

We have carried out similar, two-particle collision studies for the heavy and

light particles. The head-on collision between two heavy particles is nearly elastic,

for rSR = 1.5ξ and the given velocities of incidence. For the collisions, which we

have studied, the total kinetic energy of the particles is enough to overcome the

superfluid-mediated, attractive potential. The Video M8 illustrates the collision

dynamics of two heavy particles, for rSR = 1.5. However, the head-on collisions of

light particles is similar to the case of neutral particles, for rSR = 1.5ξ and similar

initial conditions.
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Figure 4.12: Plot of the coefficient of restitution e (Eq. (4.15)) versus rSR/ξ, for the head-on collision between

two neutral particles (initial configuration ICP2(c)).

Coefficient of restitution: We characterise this transition from inelastic to

elastic collisions by calculating the coefficient of restitution (for head-on collisions)

e =
u2,F − u1,F
u1,I − u2,I

, (4.15)

where u1,I and u2,I are, respectively, the mean velocities of the particles Pt : 1 and

Pt : 2 before the collision and u1,F and u2,F are the mean velocities of these particles

after the collision. For the collisions described above, we find: (1) e = 0 for rSR/ξ =

1.5; (2) e = 0.30 ± .08 for rSR/ξ = 6.5; (3) e = 0.90 ± .05 for rSR/ξ = 7.0; and (4)

e = 0.97± .04 for rSR/ξ = 8.0. In Fig. 4.12 we plot e versus rSR/ξ for head-on collision

between two neutral particles. We find that, at low values of rSR/ξ, the particle

collisions are inelastic with e = 0; and, as we increase rSR/ξ, e becomes finite at a

critical value rSR/ξ ∼ 6.5, and finally attains value close to 1, i.e., e = 1. Visually e

seems to rise continuously from zero at this critical point; however, the error bars

on our measurements of e do not permit us to obtain a reliable estimate for the

precise manner in which e rises from zero at this critical point.

4.3.3 Many-particle dynamics

To illustrate the dynamics of the many particles in the superfluid, we study the

dynamics of five particles by the using the initial configuration ICP3, which we de-

scribe below. Here we consider neutral particles. By using the ARGLE Eq. (4.10)

we prepare an initial state with five stationary particles, Pt : 1, Pt : 2, Pt : 3,

Pt : 4, and Pt : 5 at the coordinates (π/2, π/2), (π/2, 3π/2), (3π/2, π/2), (3π/2, 3π/2),

and (π, π), respectively. We use this initial configuration in the TGPE Eq. (4.1) and

apply the external forces Fext,1 = 0.1√
2
(1, 1), Fext,2 = 0.1√

2
(1,−1), Fext,3 = 0.1√

2
(−1, 1), and
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Figure 4.13: Schematic diagram with the initial configuration ICP3, which we use to study the

dynamics of five particles in the superfluid. Red arrows indicate the direction of external forces

Fext, on the particles (blue discs); the forces are turned off at time t0 = 2.

Fext,4 = 0.1√
2
(−1,−1) on the particles Pt : 1, Pt : 2, Pt : 3, Pt : 4, respectively, until

time t0 = 2, so as to accelerate them towards the particle Pt : 5 which is initially at

rest. Figure 4.13 illustrates the initial configuration ICP3 and the red-arrows indi-

cate the directions of the external forces. We use this initial configuration to study

the ensuing five-particle-collision dynamics for two different values of, namely, (1)

rSR = 1.5ξ and (2) r = 8.0ξ.

For rSR = 1.5ξ, the five-particle collisions are completely inelastic and the parti-

cles stick-together to form a five-particle cluster. In Fig. 4.14 (a) we show the tra-

jectories of the five colliding particles. After the collision, the cluster drifts slowly

and the particles in the cluster trace out a randomly drifting, loop-like trajectories,

as we show in Fig. 4.14 (b), where, over the time of our simulation, each particle

trajectory shows roughly six loops; all the trajectories together span an area of

size ≃ 10ξ × 10ξ. The Video M9 illustrates the spatiotemporal evolution of the five

colliding particles, for rSR = 1.5ξ.

We know from our study of head-on collisions between two neutral particles that,

at rSR = 8.0ξ, these collisions are nearly elastic with e = 0.97±.04. Similarly, the col-

lisions between five particles are nearly elastic; the slight inelasiticity arises from

the emission of sound waves. In Figs. 4.15 (a)-(i) we show via pseudocolor plots

the spatiotemporal evolution of the field |ψ(x, t)|2 and the five-particle-collision dy-

namics, for rSR = 8.0ξ. In Fig. 4.16 (a) we show the trajectories of the particles
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Figure 4.14: Trajectories of the five neutral particles Pt : 1 (purple curve), Pt : 2 (green curve), Pt : 3 (sky-

blue curve), Pt : 4 (brown curve), and Pt : 5 (yellow curve) undergoing inelastic collisions for rSR = 1.5ξ (initial

configuration ICP3(a)) (a) full view; (b) magnified view.

Pt : 1, Pt : 2, Pt : 3, Pt : 4, and Pt : 5 by using purple, green, sky-blue, brown, and

yellow circles, respectively. To begin with, the particles Pt : 1-Pt : 4 move towards

Pt : 5 and rebound after the collisions with it, and, on their journey back, they

collide with each other at the corners of the simulation domain because of our pe-

riodic boundary conditions; this process is repeated a few times, and the particles

Pt : 1-Pt : 4 move back and forth along straight lines (see Fig. 4.16 (a)). During

these symmetric repeated collisions, which are not perfectly elastic, the particles

lose their kinetic energy to the fluid in the form the sound waves; this is also ev-

ident on the plots of the Cartesian components of the particle velocity uo versus

time, as we show in Fig. 4.16 (b)-(e), where the magnitude of the rebounding veloc-

ities decreases and keep decaying as the number of collision events increases. At

around t ≃ 130, the stationary particle Pt : 5 starts moving (see Fig. 4.16 (f)) and

the symmetry imposed because of the initial configuration is lost; the particles now

collide with each other in a random manner and their motion can become chaotic

(see Fig. 4.16 (a)). The Video M10 gives the complete spatiotemporal evolution of

the five particles undergoing collisions, for rSR = 8.0ξ.

4.3.4 Interaction of a single particle with a vortex-antivortex pair

We study the interaction of a single particle with a vortex-antivortex pair for the

heavy, neutral, and light particles. We use the initial configuration ICP4, in which

a particle is placed at a distance, in front of the positive vortex of the translating

vortex-antivortex pair. By using the ARGLE Eq. (4.10) we prepare a state with

a stationary particle at (1.5π, 1.257π), this is then combined with a state corre-
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Figure 4.15: Spatiotemporal evolution of the field |ψ(x, t)|2 shown via pseudocolor plots, for the collisions

between five neutral particles (rSR = 8.0ξ, initial configuration ICP3(b)).
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Figure 4.16: (a) Trajectories of the five neutral particles Pt : 1 (purple curve), Pt : 2 (green curve), Pt : 3

(sky-blue curve), Pt : 4 (brown curve), and Pt : 5 (yellow curve) undergoing inelastic collisions (rSR = 8.0ξ,

initial configuration ICP3(b)); plots versus time t of uo,x (purple curve), uo,y (green curve) for the particles

Pt : 1-Pt : 5 shown in (b)-(f), respectively.
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Figure 4.17: Schematic diagram illustrating the initial configuration ICP4, which we use to study the inter-

action of a single particle (blue disc), placed in front of a translating vortex-antivortex pair (represented by

small red and purple discs).
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Figure 4.18: Plots versus time t of (a) qo,x, (b) qo,y, (c) uo,x, and (d) uo,y for heavy (M = 374, purple curve),

neutral (M = 1, green curve), and light (M = 0.0374, sky-blue curve) particles, placed in the path of the

positive (upper) vortex of a translating vortex-antivortex pair (initial configuration ICP4). In (a) and (b) the

values of qo,x and qo,y are not mod2π; i.e., if particle goes around our periodic simulation domain once, say in

the x̂ direction, then the values of qo,x is its value in the box plus 2π.

sponding to a vortex-antivortex pair, of size dpair ≃ 23ξ and which translates with a

velocity upair = 0.074x̂ ( see the schematic diagram in Fig. 4.17).

Figures 4.18 (a), (b), (c), and (d) show plots versus time of (a) qo,x, (b) qo,y, (c) uo,x,

and (d) uo,y, respectively, for heavy, neutral, and light particles. When the vortex-

antivortex pair approaches the heavy particle, the positive (upper) vortex glides

over the particle, which leads to a momentum exchange, so the vortex-antivortex

pair is deflected from its path, and it acquires a small velocity in the −ŷ direction.

This interaction leads to the production of sound waves. Subsequently, while the

negative vortex (of the vortex-antivortex pair) comes near the heavy particle and,

in the presence of sound waves, this particle is finally trapped on the negative

vortex. During the trapping of the particle on the negative vortex, a large amount

of acoustic energy is released into the system. This sequence of events is illustrated
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Figure 4.19: Spatiotemporal evolution of the field |ψ(x, t)|2 shown via pseudocolor plots, for a heavy particle

placed in the path of the positive (upper) vortex of a translating vortex-antivortex pair (initial configuration

ICP4).
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Figure 4.20: Spatiotemporal evolution of the field |ψ(x, t)|2 shown via pseudocolor plots, for a neutral particle

placed in the path of the positive (upper) vortex of a translating vortex-antivortex pair (initial configuration

ICP4).

by the pseudocolor plots of Figs. 4.19 (a)-(i) and Video M11. The trapped particle

executes oscillatory motion while drifting (see Fig. 4.18 purple curve for t & 200)

and the positive vortex now revolves around the particle trapped on the negative

vortex.

When a translating vortex-antivortex pair approaches neutral or light parti-

cles, they feel the flow around the positive (upper) vortex more strongly than did

the heavy particle; the neutral and light particles are pushed out and they move

around the positive vortex before getting trapped on the positive vortex (see green

and sky-blue curves Fig. 4.18 (a) and (b) for t . 20). The response of the light par-

ticle is most dramatic: while flowing around the positive vortex, it travels almost

all the way to the back of the positive vortex (t ≃ 20) before it is trapped on the

vortex. The pseudocolor plots of Figs. 4.20 (a)-(i) and 4.21 (a)-(i) and the Videos

M12 and M13 summarize the dynamics of the neutral and light particles, respec-

tively. When the neutral and the light particle get trapped on the positive vortex,

there is a sudden change in their velocities, as we show in Figs. 4.18 (c) and (d) at

t ≃ 20; this results in the generation of large fluctuations. Neutral particles exhibit

modulated oscillations, whereas light particles display chaotic temporal evolution.

In Figs. 4.22 (a), (b), and (c) we plot energy time series to illustrate the exchange of

energy between the particle and the superfluid field.
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Figure 4.21: Spatiotemporal evolution of the field |ψ(x, t)|2 shown via pseudocolor plots, for a light particle

placed in the path of the positive (upper) vortex of a translating vortex-antivortex pair (initial configuration

ICP4).
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Figure 4.22: Plots versus time t of the energy components δEfield and Eo for (a) heavy, (b) neutral, and (c)

light particles, placed in the path of the positive (upper) vortex of a translating vortex-antivortex pair (initial

configuration ICP4).
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Figure 4.23: Schematic diagram showing the initial configuration ICP5, which we use to study the interaction

of two particles (blue discs), placed in front of a translating vortex-antivortex pair (red and purple discs).

4.3.5 Interaction of two particles with a vortex-antivortex pair

We now study the interaction of two particles with a vortex-antivortex pair. For

this we use the initial configuration ICP5, in which we place the two particles Pt : 1

and Pt : 2 at a distance, in front of the positive and the negative vortices of a

translating vortex-antivortex pair (see the schematic diagram in Fig. 4.23). We use

ARGLE Eq. (4.10) to prepare a state with two stationary particles Pt : 1 and Pt : 2

at (1.5π, 1.257π) and (1.5π, 0.743π), respectively; this state is then combined with a

state corresponding to a vortex-antivortex pair of size dpair ≃ 23ξ which translates

with a velocity upair = 0.074x̂. We use the above initial configuration to study the

interaction of the vortex-antivortex pair with heavy, neutral, and light particles.

In Figs. 4.24 (a)-(e) we show that, when the vortex-antivortex pair approaches

the two symmetrically placed heavy particles, the positive (upper) vortex and the

negative (lower) vortex glide along the circumferences of Pt : 1 and Pt : 2, respec-

tively; thereafter, the vortex-antivortex pair continues to translate in the x̂ direc-

tion. The interaction of the vortex-antivortex pair with these particles leads to the

transfer of momentum to the latter and they start moving slowy (see Figs. 4.25 (a)-

(d) for t ≃ 16. Because of our periodic boundary conditions, the translating vortex-

antivortex pair comes back and again glides along the particles, which are still

in the path of translation of this pair (see Figs. 4.24 (f)-(i)). The particles move

away from the vortices, as the vortex-antivortex pair moves beyond them (see

Figs. 4.25 (a)-(d) for t & 100). At later times, the separation between the particles is

wide enough for the vortex-antivortex pair to pass through the region in between

the particles without any significant obstruction (see Figs. 4.24 (j)-(l)). However,

the plots of the particle-velocity components versus times show jumps when the

vortex-antivortex pair passes through the region in between the particles. The
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Figure 4.24: Spatiotemporal evolution of the field |ψ(x, t)|2 shown via pseudocolor plots, for two heavy particle

placed in the path of the positive (upper) and negative (lower) vortices, respectively, of a translating vortex-

antivortex pair (initial configuration ICP5).
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Figure 4.25: Plots versus time t of (a) qo,x, (b) qo,y, (c) uo,x, (d) uo,y for two heavy particles Pt : 1 (purple curve)

and Pt : 2 (green curve), placed in the path of the positive (upper) and negative (lower) vortices, respectively,

of a translating vortex-antivortex pair (initial configuration ICP5). In (a) and (b) the values of qo,x and qo,y are

not mod2π; i.e., if particle goes around our periodic simulation domain once, say in the x̂ direction, then the

values of qo,x is its value in the box plus 2π.
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Figure 4.26: Spatiotemporal evolution of the field |ψ(x, t)|2 shown via pseudocolor plots, for two neutral

particle placed in the path of the positive (upper) and negative (lower) vortices, respectively, of a translating

vortex-antivortex pair (initial configuration ICP5).

Video M14 illustrates the complete spatiotemporal evolution of the particle and

field |ψ(x, t)|2.
When the translating vortex-antivortex pair approaches symmetrically placed

neutral or light particles, the particles Pt : 1 and Pt : 2 get trapped on the posi-

tive and the negative vortices, respectively. The trapping of the two neutral (light)

particles here is similar to the trapping of a single neutral (light) particle placed in

front of a translating vortex-antivortex pair (see subsection 4.3.4). After the par-

ticles are trapped on the vortices, the two-particle-vortex-antivortex-pair complex

continues to translate in the x̂ direction, but the particles now exhibit fluctuations.

The pseudocolor plots of Figs. 4.26 (a)-(f) and 4.27 (a)-(f) and the Videos M15 and

M16 summarize the spatiotemporal evolution of the field |ψ(x, t)|2 for the neutral

and the light particles, respectively. The fluctuations in the case of the neutral par-

ticle are temporally periodic, with some modulation, whereas those in the case of

the light particle are chaotic in nature (see Figs. 4.28 (a)-(d) (neutral particle) and

4.29 (a)-(d) (light particle) for details).
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Figure 4.27: Spatiotemporal evolution of the field |ψ(x, t)|2 shown via pseudocolor plots, for two heavy particle

placed in the path of the positive (upper) and negative (lower) vortices, respectively, of a translating vortex-

antivortex pair (initial configuration ICP5).

4.3.6 Single particle dynamics in the presence of counter-rotating vortex

clusters

We study the dynamics of the single neutral particle in the presence of counter-

rotating vortex clusters. We generate the initial configuration ICP6 for this purpose

in three steps: (1) we use the ARGLE Eq. (4.10) to prepare a state with a particle at

(π, π) moving with velocity 0.1(1/
√
2,−1/

√
2); (2) we then use the ARGLE Eq. (4.10)

to prepare two positive and two negative vortex clusters, where each cluster has

12 vortices of the same sign, and the positive and the negative clusters rotate in

opposite directions (for preparation details see Appendix E.2); (3) the states ob-

tained in the steps (1) and (2) are combined together, by multiplying their wave

functions. The initial configuration so prepared is then used in the TGPE Eq. (4.1).

We deliberately do not prepare the state with counter-rotating vortex clusters in

its ground state, so under the TGPE dynamics the clusters expand and interact

with the neighboring clusters, which results in a flow with a complex distribution

of vortices. Thus, this initial state allows us to study a neutral particle in a state

that displays superfluid turbulence.

In Figs. 4.30 (a)-(f) we show the spatiotemporal evolution of the filtered vorticity

field; the particle is represented by a black disc here. Figures 4.30 (a)-(c) show that
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Figure 4.28: Plots versus time t of (a) qo,x, (b) qo,y, (c) uo,x, (d) uo,y for two neutral particles Pt : 1 (purple

curve) and Pt : 2 (green curve), placed in the path of the positive (upper) and negative (lower) vortices, respec-

tively, of a translating vortex-antivortex pair (initial configuration ICP5). In (a) and (b) the values of qo,x and

qo,y are not mod2π; i.e., if particle goes around our periodic simulation domain once, say in the x̂ direction,

then the values of qo,x is its value in the box plus 2π.
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Figure 4.29: Plots versus time t of (a) qo,x, (b) qo,y, (c) uo,x, (d) uo,y for two light particles Pt : 1 (purple curve)

and Pt : 2 (green curve), placed in the path of the positive (upper) and negative (lower) vortices, respectively,

of a translating vortex-antivortex pair (initial configuration ICP5). In (a) and (b) the values of qo,x and qo,y are

not mod2π; i.e., if particle goes around our periodic simulation domain once, say in the x̂ direction, then the

values of qo,x is its value in the box plus 2π.
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Figure 4.30: Spatiotemporal evolution of the filtered vorticity field (derived from the incompressible velocity

field), for the neutral particle initially in the presence of counter-rotating vortex clusters (initial configuration

ICP6). The instantaneous position of the particle is shown by a black disc.

the vortex clusters expand quickly and interact with their neighboring clusters.

At t ≃ 3.2 the particle sheds a vortex-antivortex pair while moving towards the

negative vortex cluster in the right bottom corner of the simulation domain; the

particle gets trapped on a nearby negative-vortex and is dragged inside the clus-

ter; at this time its velocity shoots up to uo ∼ 0.8. The vortex density decreases as

the system evolves because of the annihilation of the vortices and the anitvortices

(see Figs. 4.30 (d)-(e)). The Video M17 illustrates the dynamics of a neutral parti-

cle in the presence of counter-rotating vortex clusters. Figure 4.31 shows that the

trajectory of the particle (denoted by a series of purple circles), in the presence of

vortices, is complex. The spacing between successive circles is large (small) when

the particle velocity is large (small). During the motion the particle switches from

one vortex to another and its direction of motion keeps changing because of its in-

teractions with neighboring vortices. The regions with a high density of circles on

the trajectory plot in Fig. 4.31 occur when the area around the particle is free of vor-

tices or at late times when the overall vortex density has decreased considerably.

Figure 4.32 (a) shows that uo,x and uo,y exhibit chaotic fluctuations; in Fig. 4.32 (b)

we show plots of the energies that illustrate the exchange of energy between the

particle and the superfluid field.
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Figure 4.31: Trajectory of a neutral particle (denoted by purple circles), initially in the presence of counter-

rotating vortex clusters (initial configuration ICP6).
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Figure 4.32: Plots versus time t of (a) uo,x (purple curve) and uo,y; (b) δEfield (purple curve) and Eo (green

curve); obtained from the dynamical evolution of the neutral particle in the presence of counter-rotating vortex

clusters (initial configuration ICP6).
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4.3.7 Many-particle dynamics in the presence of counter-rotating vortex

clusters

We study the dynamics of four particles in the presence of small, counter-rotating

vortex clusters as an illustrative example of many-particle dynamics in the pres-

ence of vortices. We generate the initial configuration IPC7 for this purpose in three

steps: (1) we use the ARGLE Eq. (4.10) to prepare a minimum-energy state with

two clusters of positive and negative vortices; each cluster has 4 vortices of the

same sign, and the positive and the negative clusters rotate in opposite directions

(for preparation details see Appendix E.2). (2) We prepare a state with four station-

ary particles Pt : 1, Pt : 2, Pt : 3, and Pt : 4 at the coordinates (3π/2, π/2), (π/2, π/2),

(π/2, 3π/2), and (3π/2, 3π/2), respectively, which correspond to the centers of vor-

tex clusters; (3) the states obtained in the steps (1) and (2) are combined together,

by multiplying their wave functions, for the initial configuration ICP7 that is then

used in the TGPE Eq. (4.1) to study the dynamics of this system.

In Figs. 4.33 (a)-(i) we show the spatiotemporal evolution of the field |ψ(x, t)|2. In

the initial stages of the dynamical evolution of the system, the particles Pt : 1-Pt : 4

remain stationary at the respective centers of the rotating-vortex clusters, because

our initial configuration has four-fold symmetry (C4) and we prepare it by using

the ground state of the vortex clusters. (By contrast, in subsection 4.3.6 our initial

configuration is not the ground of the vortex clusters.) However, at around t = 37,

an instability sets in as a result of which the particle Pt : 3 starts to move out; it is

then trapped by the negative vortex in front of it (see Fig. 4.33 (c), top-left vortex

cluster); the trapped particle now rotates along with the other three vortices. Sim-

ilarly, the motion of the other particles also becomes unstable and they are trapped

in vortices, in their respective clusters; Fig. 4.33 (d) shows that the particle Pt : 2 is

trapped by a vortex at t ≃ 40 and the particles Pt : 1 and Pt : 4 are trapped by vor-

tices at t ≃ 42.4 (see Fig. 4.33 (e)). Moreover, at t ≃ 46.2 the trapped particle Pt : 3

and its vortex form a complex by including another negative vortex of the cluster

(see Fig. 4.33 (f), top-left vortex cluster). In Fig. 4.34 (a) we show the phase of the

wave function ψ; in such a plot, the vortices are the points around which the phase

changes from 0 to 2π; the top-left quadrant still has four vortices, although two on

the left are very close by and are held together in a particle-two-vortex complex.

The particle-two-vortex complex and the trapped particles continue rotating along

with the other vortices, in their respective clusters, over the rest of the simulation

time, as we show in Figs. 4.33 (g)-(i). The Video M18 illustrates the spatiotemporal

evolution of the four neutral particles and field |ψ(x, t)|2.
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Figure 4.33: Spatiotemporal evolution of the field |ψ(x, t)|2 shown via pseudocolor plots, for the four neutral

particles (large blue patches), initially placed at the centers of the counter-rotating vortex clusters (initial

configuration ICP7).
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Figure 4.34: (a) Pseudocolor plot of the phase of ψ(x, t); (b) trajectories of four neutral particles Pt : 1 (purple

curve), Pt : 2 (green curve) Pt : 3 (sky-blue curve), and Pt : 4 (brown curve), in the presence of counter-rotating

vortex clusters (initial configuration ICP7).
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Figure 4.35: Plots versus time t of uo,x (purple curve) and uo,y (green curve) for the four neutral particles

(a) Pt : 1, (b) Pt : 2, (c) Pt : 3, and (d) Pt : 4, in the presence of counter-rotating vortex clusters (initial

configuration ICP7).
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Figure 4.36: Plots of power spectra, denoted generically by S(ω), of the time series of uo,x (purple curve), uo,y

(green curve) (see Figs. 4.35) for the four neutral particles (initial configuration ICP7) (a) Pt : 1, ωc = 2ωb − ωa

(ωa = 0.2723, ωb = 0.3037, and ωc = 0.3351); (b) Pt : 2, ωc = 3ωb − 2ωa (ωa = 0.3665, ωb = 0.3351, and

ωc = 0.2723); (c) Pt : 3, ωc = 3ωb − 2ωa (ωa = 0.3665, ωb = 0.3351, and ωc = 0.2723); (a) Pt : 4, ωc = 2ωb − ωa

(ωa = 0.2723, ωb = 0.3037, and ωc = 0.3351). The frequencies ωa, ωb, and ωc that we give are associated with

S(ω) for uo,x (purple curves).
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We plot the trajectories of the centers of masses of the four particles Pt : 1

(purple curve), Pt : 2 (green curve), Pt : 3 (sky-blue curve), and Pt : 4 (brown curve)

in Fig. 4.34 (b). These centers move along roughly circular trajectories; however,

their motions are not completely periodic in time, so these trajectories meander

away from perfectly closed curves and, therefore, fill out two-dimensional areas.

This is a signature of either (a) ergodic behavior, e.g., with quasiperiodic temporal

evolution or (b) chaotic time evolution. To distinguish between (a) and (b), we

examine the time series of uo,x and uo,y for all the four particles in Figs. 4.35 (a)-(d).

The principal peaks in these power spectra can be indexed as naωa + nbωb, where

na and nb are integers and there are two main incommensurate frequencies ωa and

ωb (i.e., ωa/ωb is an irrational number). For example, in Fig. 4.36 (a) the frequency

ωc, of one of the peaks in the power spectrum S(ω), can be written as ωc = 2ωb − ωa

(here ωc = 0.3351, ωa = 0.2723, and ωb = 0.3037). This labelling of peaks indicates

clearly that the temporal evolution of Pt : 1 is quasiperiodic.

4.4 Conclusions

We have carried out an extensive study to understand the dynamics of particles in

two-dimensional superfluids at T = 0. In our study, we have used the Galerkin-

truncated GP equation to model the superfluid and we assume Newtonian dynam-

ics for the particles, to carry out a systematic DNSs for a variety of initial config-

urations to elucidate the interplay of particles and fields in superfluids. We have

used Gaussian potentials to represent particles in the TGPE. The study of par-

ticles in superfluids is an important problem, with a rich history [21, 22]. Early

experimental and theoretical studies have been concerned with the mechanism of

vortex nucleation by a moving impurity, e.g., 4He+, in helium II [22]; moreover,

the breakdown of superfluidity around ions moving with velocities greater than a

critical velocity and the associated formation of vortex rings and loops constituted

an important area [23, 24]. More recently, the studies of Refs. [25, 26] have inves-

tigated superfluid flow past an obstacle; in 2D the flow around a disc has been

shown to become dissipative above a critical velocity because of the emission of

vortex-antivortex pairs [25], whereas, in 3D, the appearance of vortices for a flow

past a cylinder lead to the observation of dissipation [26]. The DNS studies of

Refs. [11], based on the Gross-Pitaevskii equations, have shown that, for velocities

greater than the critical velocity, the dominant mechanism of energy transfer be-

tween a moving particle and a superfluid is vortex formation; this study has also

explored the link between vortex shedding and drag force on the particle. The
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study of Ref. [10] investigated in 3D, the motion of a heavy particle through a su-

perfluid, when a constant external force acts on the particle. This work has shown

that, at uo = uc a vortex ring forms and the particle can get trapped within the vor-

tex core if the applied force is less than a critical value. Reference [12] considered

a point-like impurity and has calculated, analytically within the Gross-Pitaevskii

framework, the induced mass of the particle and the drag force acting on it, in 1D,

2D, and 3D; it has also shown that the drag force appears for supersonic motion of

the impurity. A recent study (Ref. [27]) has explored, asymptotically and numeri-

cally, the flow around a single impurity and a network of impurities by using a 2D

Gross-Pitaevskii framework, it has suggested that the excitations of the superfluid

depend sensitively on the potential representing the impurity.

In our comprehensive study, we have used active particles [10] to investigate

the particle dynamics in superfluids, for a variety of interesting, initial configura-

tions. From our study of the dynamics of a single particle in the superfluid, for

the cases of light, neutral, and heavy particles, we find that the particle motion

can become chaotic, even if the superfluid is not turbulent. Our study of the inter-

action of the particle(s) with vortices, shows that the ensuing dynamics depends

sensitively on the particle characteristics. From our study of two-particle dynam-

ics in superfluids, we have demonstrated the existence of an effective, superfluid-

mediated, attractive interaction between the particles. Moreover, we have intro-

duced a short-range repulsive interaction between particles and have studied the

collisions of heavy, neutral, and light particles. Here, we find that, at low values of

rSR, the collisions are completely inelastic with coefficient of restitution e = 0; as we

increase rSR e becomes finite at a critical point, and finally attains values close to

unity, when the collisions are elastic. Furthermore, we find that many-particle col-

lision dynamics also depends on rSR, where its low value results in the formation

of a many-particle bound state. At large values of rSR, we obtain chaotic many-

particle collision dynamics. Our studies of the assemblies of particles and vortices

demonstrates that their dynamics show rich, turbulent spatiotemporal evolution.
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4.5 Video Captions

Video M1 This video illustrates the spatiotemporal evolution of the heavy particle

and the field |ψ(x, t)|2, shown via pseudocolor plots, when a constant external force

Fext = 0.02x̂ acts on the particle (initial configuration ICP1). The particle appears

as a large blue patch and the vortices as blue dots.

Video M2 This video illustrates the spatiotemporal evolution of the neutral parti-

cle and the field |ψ(x, t)|2, shown via pseudocolor plots, when a constant external

force Fext = 0.01x̂ acts on the particle (initial configuration ICP1). The particle ap-

pears as a large blue patch and the vortices as blue dots.

Video M3 This video illustrates the spatiotemporal evolution of the light particle

and the field |ψ(x, t)|2, shown via pseudocolor plots, when a constant external force

Fext = 0.01x̂ acts on the particle (initial configuration ICP1). The particle appears

as a large blue patch and the vortices as blue dots.

Video M4 This video illustrates the collision dynamics of two neutral particles in

the absence of a short-range, repulsive interaction (initial configuration ICP2(a)),

when they are released from rest. The dynamics of the particles is illustrated by

the spatiotemporal evolution of the field |ψ(x, t)|2, shown via pseudocolor plots.

Video M5 This video illustrates the collision dynamics of two neutral particles in

the presence of a short-range, repulsive interaction (rSR = 1.5ξ, initial configura-

tion ICP2(b)), when they are released from rest. The dynamics of the particles is

illustrated by the spatiotemporal evolution of the field |ψ(x, t)|2, shown via pseudo-

color plots.

Video M6 This video illustrates the collision dynamics of two neutral particles for

rSR = 1.5ξ (initial configuration ICP2(c)). The dynamics of the particles is illus-

trated by the spatiotemporal evolution of the field |ψ(x, t)|2, shown via pseudocolor

plots.

Video M7 This video illustrates the collision dynamics of two neutral particles for

rSR = 7.0ξ (initial configuration ICP2(c)). The dynamics of the particles is illus-

trated by the spatiotemporal evolution of the field |ψ(x, t)|2, shown via pseudocolor

plots.
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Video M8 This video illustrates the collision dynamics of two heavy particles for

rSR = 1.5ξ (|Fext| = 3.75, t0 = 6.0, and initial configuration ICP2(c) (see Fig. 4.9)).

The dynamics of the particles is illustrated by the spatiotemporal evolution of the

field |ψ(x, t)|2, shown via pseudocolor plots.

Video M9 This video illustrates the collision dynamics of five neutral particles for

rSR = 1.5ξ (initial configuration ICP3). The dynamics of the particles is illustrated

by the spatiotemporal evolution of the field |ψ(x, t)|2, shown via pseudocolor plots.

Video M10 This video illustrates the collision dynamics of five neutral particles for

rSR = 8.0ξ (initial configuration ICP3). The dynamics of the particles is illustrated

by the spatiotemporal evolution of the field |ψ(x, t)|2, shown via pseudocolor plots.

Video M11 This video illustrates the spatiotemporal evolution of the field |ψ(x, t)|2
shown via pseudocolor plots, for a heavy particle placed in the path of the positive

(upper) vortex of a translating vortex-antivortex pair (initial configuration ICP4).

Video M12 This video illustrates the spatiotemporal evolution of the field |ψ(x, t)|2
shown via pseudocolor plots, for a neutral particle placed in the path of the positive

(upper) vortex of a translating vortex-antivortex pair (initial configuration ICP4).

Video M13 This video illustrates the spatiotemporal evolution of the field |ψ(x, t)|2
shown via pseudocolor plots, for a light particle placed in the path of the positive

(upper) vortex of a translating vortex-antivortex pair (initial configuration ICP4).

Video M14 This video illustrates the spatiotemporal evolution of the field |ψ(x, t)|2
shown via pseudocolor plots, for two heavy particles placed in the path of the pos-

itive (upper) and negative (lower) vortices, respectively, of a translating vortex-

antivortex pair (initial configuration ICP5).

Video M15 This video illustrates the spatiotemporal evolution of the field |ψ(x, t)|2
shown via pseudocolor plots, for two neutral particles placed in the path of the

positive (upper) and negative (lower) vortices, respectively, of a translating vortex-

antivortex pair (initial configuration ICP5).

Video M16 This video illustrates the spatiotemporal evolution of the field |ψ(x, t)|2
shown via pseudocolor plots, for two light particles placed in the path of the pos-
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itive (upper) and negative (lower) vortices, respectively, of a translating vortex-

antivortex pair (initial configuration ICP5).

Video M17 This video illustrates the spatiotemporal evolution of the filtered vor-

ticity field, for the neutral particle initially in the presence of counter-rotating vor-

tex clusters (initial configuration ICP6). The instantaneous position of the particle

is shown by a black disc.

Video M18 This video illustrates the spatiotemporal evolution of the field |ψ(x, t)|2
shown via pseudocolor plots, for the four neutral particles (large blue patches),

initially placed at the centers of the counter-rotating vortex clusters (initial config-

uration ICP7).



Appendix E

E.1 Note on Units

The GP equation, which describes the dynamical evolution of the wave function

ψ(x, t) of a weakly interacting, 2D Bose gas at low temperatures, is

i~
∂ψ(x, t)

∂t
= − ~2

2m
∇2ψ(x, t)−µψ(x, t)+g2D|ψ|2ψ(x, t)+

∑No

i=1
VP(x−qi)ψ(x, t), (E.1)

where g2D is the effective interaction strength. As we have mentioned earlier, the

GP equation conserves the energy, given by the Hamiltonian

H =

∫

A
d2x
( ~2

2m
|∇ψ|2 + 1

2
g2D|ψ|4 +

∑No

i=1
VP(x− qi)|ψ|2

]
d2x
)
, (E.2)

and the total number of particles N =
∫
A d

2x|ψ|2. We can use the Madelung trans-

formation to write ψ(x, t) =
√
ρ(x, t)/meiφ(x,t) and the total density is ρ∗ = N/A. To

obtain Eq. (4.1), we first divide Eq. (E.1) by ~ and define µ = µ/~, g = g2D/~, and

VP = VP/~; we then set ~/2m = α0, with m = 1. In these units, the quantum of

circulation is h/m = 4πα0, the sound velocity is c =
√
g|ψ0|2/m =

√
gρ0, and the

healing length is ξ =
√
~2/2m|ψ0|2g =

√
2α2

0/ρ0g, where ρ0 = m|ψ0|2 is the conden-

sate density. In our choice of units, the sound waves take time t = (L/2)/c = π/c, to

travel from the center to the edge of the square, periodic simulation domain.

E.2 Preparation of counter-rotating vortex clusters

The steps involved in the preparation of ψcluster are outlined below:

1. Initialize ψe(λ1, λ2) =
(λ1+ιλ2)

A
tanh

(
A√
2ξ

)
, where λ1 =

√
2 cosx, λ2 =

√
2 cos y, and

A =
√
λ21 + λ22.

2. Prepare ψ4 = ψe(λ1 − η, λ2)ψe(λ1, λ2 − η)ψe(λ1 + η, λ2)ψe(λ1, λ2 + η), where η =

1/
√
2.
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3. Prepare ψcluster = (ψ4)
[γd/4], where γd = 8/(4πα0) and [·] denotes the integer part

of a real number.

4. Evolve ψcluster by using ARGLE with uadv,x = sin(x) cos(y), uadv,y = − cos(x) sin(y)

to minimize acoustic emission.

For more details on the preparation of a counter-rotating vortex clusters, we

refer the reader to Ref. [20].
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Chapter 5

Homogeneous Isotropic Superfluid Turbulence in Two

Dimensions: Inverse and Forward Cascades in the

Hall-Vinen-Bekharevich-Khalatnikov model

In this Chapter we present the first direct-numerical-simulation of the statistical

properties of two-dimensional superfluid turbulence in the Hall-Vinen-Bekharevich-

Khalatnikov two-fluid model. We show that both normal fluid and superfluid en-

ergy spectra can exhibit two power-law regimes, the first associated with an inverse

cascade of energy and the second with the forward cascade of enstrophy.

5.1 Introduction

Superfluid turbulence, which continues to provide challenges for experiments, the-

ory, and numerical simulations [1–4], has been studied more often in three dimen-

sions (3D) than in two dimensions (2D). It is well known that 2D and 3D fluid tur-

bulence are qualitatively different [5–8]; similar differences have not been explored

in detail for superfluid turbulence. Therefore, we study the statistical proper-

ties of 2D homogeneous, isotropic, superfluid turbulence, by using the Hall-Vinen-

Bekharevich-Khalatnikov (HVBK), two-fluid model [4,9–12], with the specific goal

of elucidating the natures of inverse and forward cascades here, namely, the flow of

energy from the energy-injection length scale to larger scales and the flux of enstro-

phy, the mean square vorticity, to small length scales. Homogeneous, isotropic, 2D

and 3D fluid turbulence are essentially different because, in the former, both the

energy and the enstrophy are conserved in the inviscid, unforced limit, whereas, in

the latter, only the energy is conserved [5–8]. Therefore, in 2D fluid turbulence, en-

ergy, injected at a wave number kf , shows an inverse cascade towards large length

scales (wave numbers k < kf), whereas the enstrophy displays a forward cascade

to small length scales (wave numbers k > kf); these inverse and forward cascades
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yield, respectively, energy spectra that scale as E(k) ∼ k−5/3 and E(k) ∼ k−δ, where

δ depends on the friction (δ = 3 if there is no friction). By contrast, 3D fluid tur-

bulence shows only a forward cascade of energy with E(k) ∼ k−5/3, at the level of

Kolmogorov’s (K41) phenomenological theory [5] and for kf ≪ k ≪ kd, where kd is

the wave-number scale at which viscous dissipation becomes significant.

Our direct numerical simulation (DNS), which we have designed to study the

statistical properties of inverse and forward cascades in the HVBK model, yields

several interesting results that have not been anticipated hitherto: (1) Both normal-

fluid and superfluid energy spectra, En(k) and Es(k), respectively, show inverse-

and forward-cascade regimes; the former is characterized by a power law Es(k) ∼
En(k) ∼ k−α whose exponent is consistent with α ≃ 5/3. (2) The forward-cascade

power law depends on (a) the friction coefficient, as in 2D fluid turbulence, and,

in addition, on (b) ρn/ρ, where ρn and ρ are normal-fluid and total densities, re-

spectively, and (c) the coefficient B of mutual friction, which couples normal and

superfluid components. (3) As B increases, the normal and superfluid velocities,

un and us, respectively, get locked to each other, and, therefore, Es(k) ≃ En(k),

especially in the inverse-cascade regime. (4) We quantify this locking tendency by

calculating the probability distribution functions (PDFs) P(cos(θ)) and P(γ), where

the angle θ ≡ cos−1((un ·us)/(|un||us|)) and the amplitude ratio γ = |un|/|us|; the for-

mer has a peak at cos(θ) = 1; and the latter exhibits a peak at γ = 1 and power-law

tails on both sides of this peak. (4) This locking increases as we increase B, but

the power-law exponents for the tails of P(γ) are universal, in so far as they do not

depend on B, ρn/ρ, and the details of the energy-injection method. (5) We charac-

terize the energy and enstrophy cascades by computing the energy and enstrophy

fluxes and the mutual-friction transfer functions for all wave-number scales k.

The remaining part of this Chapter is organized as follows. In Sec. 5.2 we de-

scribe the HVBK model and the numerical methods we use. Section 5.3 is devoted

to our results. We end with conclusions in Sec. 5.4.

5.2 Model and Numerical Methods

The incompressible, 2D HVBK equations can be written as [4,9–12]

Dtun = − 1

ρn
∇pn + νn∇2un − µnun + Fn

mf + fnu , (5.1a)

Dtus = − 1

ρs
∇ps + νs∇2us − µsus + Fs

mf + f su, (5.1b)

where Dtui ≡ ∂t + ui · ∇, ∇ · ui = 0 is the incompressibility condition, and the

subscript i ∈ (n, s) denotes the normal fluid (n) or the superfluid (s); ρi, pi, and νi are
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the density, partial pressure, and viscosity, respectively, of the component i. Linear-

friction terms, with coefficients µi, model air-drag-induced or bottom friction. For

the superfluid νs and µs are zero, but any DNS study must use νs( 6= 0) ≪ νn and

µs ≪ µn to avoid numerical instabilities and to achieve a statistically steady state.

The mutual-friction terms, which model the interaction between the normal and

the superfluid components, can be written as Fn
mf = (ρs/ρ)fmf and Fs

mf = −(ρn/ρ)fmf

in Eqs. (5.1a) and (5.1b), respectively, where

fmf =
B

2

ωs

|ωs|
× (ωs × uns) +

B′

2
ωs × uns, (5.2)

with uns = (un−us) the slip velocity, and B and B′ the coefficients of mutual friction.

In most of our studies we set B′ = 0 so, in 2D, fmf = −B
2
|ωs|uns. (We have checked

in one representative case that our results do not change qualitatively if B′ > 0.)

In our DNS, we use the stream-function ψi and vorticity ωi = ∇ × ui = −∇2ψi

formulation [13]. To obtain a statistically steady state, we force the vorticity field

with a Kolmogorov-type term f i
ω = −f i

0k
i
f cos(k

i
fx), where f i

0 and kif are the amplitude

and the forcing wave number, respectively. We use (a) kif = 2 and (b) kif = 50;

the former leads to energy spectra that are dominated by a forward cascade of

enstrophy, whereas the latter yields spectra with an inverse cascade of energy and

a forward cascade of enstrophy; we force the dominant component in case (b) (i.e.,

the normal-fluid (superfluid) component if ρn/ρ > 0.5 (ρn/ρ ≤ 0.5)).

We perform a DNS of Eqs. (5.1a) and (5.1b) with periodic boundary conditions,

on a square simulation domain with side L = 2π, by using a pseudospectral method

with N2
c collocations points and the 2/3 dealiasing rule. To evolve Eqs. (5.1a) and

(5.1b) in time we use a second-order, exponential time differencing Runge-Kutta

method [14]. The details of the parameters, which we use in our DNS runs, are

given in the Table(5.1). We characterize our system by computing the spectra En(k)

and Es(k), Ei(k) = 〈∑k− 1
2
<k′≤k+ 1

2
|ui(k

′, t)|2〉t (〈〉t denotes a time average), the prob-

ability distribution functions (PDFs) P (ωi) of the vorticities and P (cos(θ)), the cu-

mulative PDF Q(γ) of γ, energy and enstrophy fluxes Πi(k, t) and Zi(k) (i ∈ (n, s)),

respectively, and the mutual-friction transfer function Mi(k), which we define be-

low.

5.3 Results

We present the results of our DNS as follows. In Sec. 5.3.1 we present pseudocolor

plots of normal-fluid and superfluid vorticities. Section 5.3.2 is devoted to energy

spectra, Sec. 5.3.3 to fluxes, and Sec. 5.3.4 to probability distribution functions.
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Nc ρn/ρ B νn νs µn µs knf ksf fn
0 f s

0 ℓnλ ℓsλ Renλ Resλ τneddy τ seddy kmaxηn kmaxηs

R0 1024 − − 10−4 10−5 10−2 5× 10−3 2 2 10−3 10−3 0.36 0.38 92.77 1.25 × 103 51.1 45.8 17.7 5.16

R1 1024 0.1 1.0 10−4 10−5 10−2 5× 10−3 2 2 10−3 10−3 0.371 0.378 112.9 1.3× 103 46.3 42.3 16.8 5.01

R2a 1024 0.1 1.0 10−4 10−5 10−2 5× 10−3 − 50 − 10−1 0.062 0.049 108.4 876.7 5.43 5.12 2.89 0.82

R2b 1024 0.1 2.0 10−4 10−5 10−2 5× 10−3 − 50 − 10−1 0.058 0.05 100.6 876.8 5.23 5.05 2.80 0.82

R2c 1024 0.1 5.0 10−4 10−5 10−2 5× 10−3 − 50 − 10−1 0.054 0.05 94.3 876.5 5.12 5.04 2.7 0.82

R3 1024 0.05 1.0 10−4 10−5 10−2 5× 10−3 − 50 − 10−1 0.064 0.051 119.1 976.7 5.03 4.77 2.84 0.771

R4 1024 0.3 1.0 10−4 10−5 10−2 5× 10−3 − 50 − 10−1 0.052 0.039 62.9 487.6 5.72 5.14 3.18 0.868

R5 1024 0.5 1.0 10−5 10−6 10−2 5× 10−3 − 50 − 10−1 0.043 0.035 484.1 4.1× 103 4.88 4.49 0.916 0.264

R6 1024 0.9 1.0 10−5 10−6 10−2 5× 10−3 50 − 10−1 − 0.039 0.047 617.0 7.19 × 103 3.50 3.84 0.771 0.268

Table 5.1: Parameters for our DNS runs R0-R6: ρn/ρ is the fraction of the normal fluid, B the mutual-friction

coefficient, N2
c the number of collocation points, νn (νs) the normal-fluid (superfluid) kinematic viscosity, µn

(µs) the coefficient of linear friction for the normal fluid (superfluid), and knf (ksf ) and fn
0 (fs

0 ) are the forcing

wavevector and the forcing amplitude for the normal fluid (superfluid); νs and µs should vanish for a superfluid

but they are included here for numerical stability, with νs ≪ νn and µs < µn. In runs R2a-R6 we force the

dominant component (i.e., the normal-fluid (superfluid) component if ρn/ρ > 0.5 (ρn/ρ ≤ 0.5)).

5.3.1 Vorticity fields

In Fig. 5.1 we present pseudocolor plots of ωn and ωs for runs R1 (panels (a) and (b))

and R2a (panels (c) and (d)) for kf = 2 and 50, respectively. The sizes of the vortical

regions in these plots are ∼ k−1
f (as in 2D fluid turbulence with friction [7, 13]).

Figures 5.1 (a) and (b) show that the normal and superfluid components are locked

to each other; this is illustrated dramatically in Video M1, in which the lower two

panels show the spatiotemporal evolution of Figs. 5.1 (a) and (b) and the top two

panels show how ωn and ωs evolve in the absence of mutual friction (i.e., B = B′ =

0); in the latter case, ωn evolves to a frozen, stationary state; however, if B > 0, then

the turbulence in the superfluid component is transferred to the normal component

(top two panels of Video M1). Such a transfer of turbulence has been envisaged in

3D superfluid turbulence [15–17] but, to the best of our knowledge, never displayed

as graphically as in our Video M1 for two-dimensional superfluid turbulence in the

HVBK model.

5.3.2 Spectra

Figure 5.2 (a) compares energy spectra from runs R0 and R1, in which energy is

injected at kf = 2, so there is no inverse-cascade regime in these spectra; this figure

illustrates how the mutual-friction-induced interaction between the two compo-

nents modifies the energy spectra Ei(k, t). For the run R0, in which B = 0 and,

therefore, the normal and superfluid components are uncoupled, En(k) and Es(k)

are shown in Fig. 5.2 (a) by full and dashed purple lines, respectively: not surpris-

ingly, the region in which dissipation is significant is much larger in En(k) than

in Es(k); and the power-law regimes, more prominent in Es(k) than in En(k), are
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(a) (b)

(c) (d)

Figure 5.1: Pseudo-color plots of the vorticity fields, ωn and ωs, from our DNS runs R1 at t = 1720

(panels (a) and (b), kf = 2) and R2a at t = 1500 (panels (c) and (d), kf = 50), respectively; show that

the normal and superfluid component are locked to each other.
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characterized by different, apparent scaling exponents, because the normal-fluid

Reynolds number is too small for fully developed, normal-fluid turbulence. When

we couple the normal and superfluid components, as in the run R1, En(k) (green full

curve in Fig. 5.2 (a)) is pulled up towards Es(k) (green dashed curve in Fig. 5.2 (a)),

by virtue of the locking tendency that we have mentioned above; furthermore, both

En(k) and Es(k) now (i) display k−δ forward-cascade, scaling ranges, with δ ≃ 4.2,

(ii) lie very close to each other at small wave numbers, and (iii) show dissipation

regions at much higher wave numbers than in their counterparts when there is no

coupling (B = 0 and run R0).

To study dual cascades, i.e., (i) an inverse cascade of energy for k < kf and

(ii) a direct cascade of enstrophy for k > kf , we use our DNS runs R2a-R6 (see

Table 5.1). Figure 5.2 (b) shows En(k) (full curves) and Es(k) (dashed curves) with

dual cascades, for the runs R2a with B = 1 (purple curves), R2b with B = 2 (green

curves), and R2c with B = 5 (blue curves). The inverse-cascade inertial ranges

(with k < kf) of En(k) and Es(k) exhibit scaling that is consistent with a k−5/3

form (orange, dashed line), whereas the forward-cascade ranges (with k > kf) are

consistent with k−δ scaling, and δ ≃ 4.2 (black, dashed line). In the forward-cascade

regime of 2D fluid turbulence, the value of δ depends on the coefficient of linear

friction [7, 13, 18, 19]; we find that, in the 2D HVBK model, δ depends not only

on the coefficients of linear friction, but also on the mutual friction coefficients.

Furthermore, the locking that we have discussed above makes En(k) and Es(k) lie

more-or-less on top of each other for a considerable range of wave numbers; not

surprisingly, this range of overlap increases as B increases; for B = 5 it extends

into the direct-cascade region. Figure 5.2 (c) shows inverse- and forward-cascade

regimes in log-log plots of En(k) (full curves) and Es(k) (dashed curves) versus k for

five representative values of ρn/ρ (runs R2a (purple curves), R3 (green curves), R4

(blue curves), R5 (black curves), and R6 (yellow curves)), with B = 1 and k < kf =

50; the Reynolds numbers for these runs (see Table 5.1) are comparable, but not

identical, to each other, because we force the normal-fluid (superfluid) if ρn/ρ > 0.5

(ρn/ρ ≤ 0.5) to obtain a statistically steady state on the time scales of our DNS

runs.

The HVBK model allows us to study the evolution of two-fluid turbulence as we

change ρn/ρ, which is small at low temperatures and increases as the temperature

increases and approaches 1 at the superfluid transition temperature; if ρn/ρ =

0.05, i.e., a 95% superfluid fraction, HVBK turbulence is close to that of a pure

superfluid, on the length and Mach-number scales at which the HVBK model is

valid; in contrast, HVBK turbulence at ρn/ρ = 0.9 is close to that of a classical,
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incompressible fluid. In Fig. 5.2 (c), the orange, dot-dashed line indicates a k−5/3

power-law form that is visually close to the slopes (in log-log plots) of the energy

spectra in the inverse-cascade scaling ranges; the black, dot-dashed line indicates a

k−4.2 power-law form that is visually close to the slope of the En(k) spectrum in the

forward-cascade scaling range for ρn/ρ = 0.9; clearly, this forward-cascade spectral

exponent depends on (a) the friction coefficient, as in 2D fluid turbulence, and,

in addition, on (b) ρn/ρ, (c) and B; a complete study of this dependence requires

extensive, and high-resolution DNS studies whose current computational cost is

prohibitive.

5.3.3 Fluxes

To characterize fluxes in the inverse- and forward-cascade regimes we use the

energy-transfer relations for 2D, homogeneous, isotropic, HVBK, turbulence, namely,

∂tEi(k, t) = −Di(k, t) + Ti(k, t) +Mi(k, t) + F i
o(k), (5.3)

where i ∈ (n, s), Di(k, t) ≡ ∑
k− 1

2
<k′≤k+ 1

2
(νik

′2 + µi)|ui(k
′)|2 is the transfer function,

which combines the effects of viscous dissipation and the friction, Ti(k, t) is the

kinetic-energy transfer because of the triad interactions of the Fourier components

of the velocities, and F i
o(k) is the energy-injection spectrum for the component i ∈

(n, s). The transfer function Mi(k), which accounts for the exchange of energy

between the normal and the superfluid components, because of the mutual-friction

coupling, is

Mi(k, t) ≡
∑

k− 1
2
<k′≤k+ 1

2

Fi
mf(k

′, t) · ui(−k′, t). (5.4)

Given Ti(k, t), we can define the kinetic-energy fluxes, through the wave number k,

as Πi(k, t) = 〈
∫ kmax

k
Ti(k

′, t)dk′〉t; and their analogs Zi(k) (i ∈ (n, s)) for the enstrophy

fluxes, which we plot versus k in Figs. 5.2 (d) and (e), respectively, for the same

runs (R2a and R3-R6) and the same color codes as in Fig. 5.2 (c). In Fig. 5.2 (d),

for each one of these runs, the energy fluxes Πi(k, t) < 0, for k < kf , which confirms

that we have inverse cascades of energy; in contrast, the enstrophy fluxes Zi(k) > 0,

for k > kf , in Fig. 5.2 (e), so we have forward cascades of enstrophy. For the runs

R2a and R3-R6 we plot, in Fig. 5.2 (f), the transfer functions Mi(k) = 〈Mi(k, t)〉t;
this function characterizes the energy exchange, because of the mutual friction B,

between the normal and superfluid components.
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Figure 5.2: [Top panels] Log-log plots of the energy spectra En(k) (full lines) and Es(k) (dashed

lines) from our DNS runs: (a) R0 (B = 0, purple lines) and R1 (B = 1, green lines) with kf = 2; (b)

R2a (B = 1, purple curves), R2b (B = 2, green curves), and R2c (B = 5, sky-blue curves) with ksf = 50

and ρn/ρ = 0.1; (c) R2a (purple curves), R3 (green curves), R4 (sky-blue curves), R5 (black curves),

and R6 (yellow curves), with B = 1 and we force the dominant component. [Lower panels] Plot of (d)

energy flux Πi(k); (e) enstrophy flux Zi(k); and (f) mutual friction transfer function Mi(k), for the

DNS runs represented in the panel (c), as mentioned above.
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Figure 5.3: (a) Semilogarithmic (base 10) plots of the PDF P (cos(θ)) of the angle θ between un

and us for runs R1 (red circles), R2a (B = 1, blue squares), R2b (B = 2, green diamonds), and R2c

(B = 5, purple triangles). Loglog (base 10) plots of (b) the cumulative distribution functions (CDF)

Q(γ) of γ = |un|/|us| and (c) complementary CDFs R(γ) for the runs R1, R2a-R2c, R5, and R6. CDFs

show power-law tails Q(γ) ∼ γ2 and R(γ) ∼ γ−2, implying that the PDF P (γ) ∼ γ, for γ < 1, and

P (γ) ∼ γ−3, for γ > 1.

5.3.4 PDFs

We quantify the locking of the normal and superfluid velocities by plotting, in

Fig. 5.3 (a), the PDF P (cos(θ)) of the angle θ between un and us for runs R1 and

R2a-R2c. P (cos(θ)) peaks at cos(θ) = 1 and falls rapidly with increasing θ; this in-

dicates that un(r, t) and us(r, t) align preferentially along the same direction; the

degree of alignment increases as we increase B.

In Figs. 5.3 (b) and (c) we show, respectively, plots of the cumulative distribution

functions (CDFs) Q(γ) of γ = |un|/|us|, and the complementary CDFs R(γ), respec-

tively, for the runs R1, R2a-R2c, R5, and R6. Both show power-law tails that imply

that for the PDF P (γ) ∼ γ, for γ < 1, and P (γ) ∼ γ−3, for γ > 1; the power-law

exponents of these tails of P (γ) are universal in the sense that they do not depend

on B, ρn/ρ, and kf .

In Figs. 5.4 and 5.5 we show that the PDFs of the Cartesian components of the

normal and superfluid velocities in 2D HVBK turbulence are close to Gaussian (as

in 2D turbulence). To obtain power-law tails in such PDFs, of the type that have

been seen in some experiments in three-dimensional quantum turbulence [20], we

must use either (a) the Gross-Pitaevskii equation [21–23], which can resolve quan-

tum vortices or (b) Biot-Savart-type models [24]. Two-dimensional superfluid tur-

bulence is now being studied numerically with such models [4,23,25,26]. In partic-

ular, some DNS studies have looked for inverse cascades in the 2D GP turbulence,

which is forced and in which a dissipation term is used to obtain a statistically

steady state. One such study [26] has obtained an inverse cascade, whereas an-

other [25] has argued that a direct cascade occurs in the microcanonical evolution
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Figure 5.4: Semilogarithmic (base 10) plots of the PDFs of the (a) x component ux
n and (b) y compo-

nent uy
n of the normal fluid velocity; PDFs of (c) x componentux

s ; (d) y componentuy
s of the superfluid

velocity. σuj

i

denotes the standard-deviation of the field uji, here i ∈ (n, s) and j ∈ (x, y). These data

are from our DNS runs R2a (red circles), R2b (blue squares), and R2c (green diamonds), respectively;

the orange dashed line indicates a Gaussian fit.
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Figure 5.5: Semilogarithmic (base 10) plots of the PDFs of the (a) x component ux
n and (b) y compo-

nent uy
n of the normal fluid velocity; PDFs of (c) x componentux

s ; (d) y componentuy
s of the superfluid

velocity. σuj

i

denotes the standard-deviation of the field uji, here i ∈ (n, s) and j ∈ (x, y). These data

are from our DNS runs R2a (red circles), R5 (blue squares), and R6 (green diamonds), respectively;

the orange dashed line indicates a Gaussian fit.
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Figure 5.6: Semilogarithmic (base 10) plots of the PDFs of the vorticity of the (a) normal fluid (ωn)

from our DNS runs R2a (red circles), R2b (blue squares), and R2c (green diamonds); the black- and

the orange-dashed lines indicate an exponential fit to the left (slope = −0.5064) and the right (slope

= 0.5207) branches of the PDF P (ωn/σωn
) for the DNS run R2a; PDFs of the (b) superfluid (ωs) from

our DNS runs R2a (red circles), R2b (blue squares), and R2c (green diamonds); the black- and the

orange-dashed lines indicate an exponential fit to the left (slope = −0.6818) and the right (slope

= 0.6951) branches of the PDF P (ωs/σωs
) for the DNS run R2a; PDFs of the (c) normal fluid (ωn)

from our DNS runs R2a (red circles), R5 (blue squares), and R6 (green diamonds); the black- and

the orange-dashed lines indicate an exponential fit to the left (slope = −0.5064) and the right (slope

= 0.5207) branches of the PDF P (ωn/σωn
) for the DNS run R2a; PDFs of the (d) superfluid (ωs)

from our DNS runs R2a (red circles), R5 (blue squares), and R6 (green diamonds); the black- and

the orange-dashed lines indicate an exponential fit to the left (slope = −0.6818) and the right (slope

= 0.6951) branches of the PDF P (ωs/σωs
) for the DNS run R2a. σωi

denotes the standard-deviation

of the field ωi, here i ∈ (n, s).



5.4. Conclusions 188

of the GPE. On scales that are much larger than the mean separation between

quantum vortices, and when quantum vortices of the same sign cluster, we ex-

pect superfluids to be described by the HVBK equations, if we restrict ourselves to

low-Mach-number flows [4, 9, 10]; and the extraction of HVBK-model parameters

from Gross-Pitaevskii studies is just beginning to be studied in three [27–29] and

two [30, 31] dimensions. Figure 5.6 shows that the PDFs of the normal and super-

fluid vorticity in 2D HVBK turbulence are close to exponentials, as in the case of

2D fluid turbulence.

5.4 Conclusions

Our DNS of homogeneous, isotropic turbulence in the 2D HVBK model has led

to the first elucidation of inverse and forward cascades, in this system, has con-

trasted them with their counterparts in 2D fluid turbulence, and led to the fol-

lowing results that await experimental confirmation. We have shown that both

En(k) and Es(k) exhibit inverse- and forward-cascade regimes, the former with

Es(k) ∼ En(k) ∼ k−α and α ≃ −5/3, and the latter with spectral exponents that

depend on the friction coefficient, ρn/ρ, and B. We have demonstrated that, as B

increases, un and us tend to align with each other: the PDF P(cos(θ)) has a peak

at cos(θ) = 1 and P(γ) displays power-law tails with universal exponents, which

do not depend on B, ρn/ρ, and kf . Furthermore, we have shown how energy and

enstrophy fluxes depend on B, ρn/ρ, and the wavenumber k. The parameters B

and ρn/ρ depend on the temperature; and this dependence has been measured in

experiments [32] in three dimensions; such experimental studies have not been

carried out in 2D.
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5.5 Video Captions

Video M1 This video illustrates the spatiotemporal evolution, via pseudocolor plots,

of ωn (left panels) and ωs (right panels) in which the mutual friction is (a) absent in

the top two panels (DNS run R0) and (b) present in the lower two panels (DNS run

R1).
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Chapter 6

Superfluid turbulence: A shell-model approach

In this Chapter we examine the multiscaling behavior of the velocity structure func-

tions in three-dimensional superfluid turbulence by using a shell-model for the

three-dimensional Hall-Vinen-Bekharevich-Khalatnikov (HVBK) equations. Our

HVBK shell model is based on the Gledzer-Okhitani-Yamada (GOY) shell model.

In particular, we examine the dependence of multiscaling on the normal-fluid frac-

tion and the mutual-friction coefficients. Our extensive study of the 3D HVBK-shell-

model shows that the multiscaling behavior of the velocity structure functions in

superfluid turbulence is more complex than what has been reported so far.

6.1 Introduction

The characterization of the multiscaling properties of velocity structure functions [1]

occupies a central place in the elucidation of the statistical properties of turbulence,

in general, and superfluid turbulence, in particular. Direct numerical simulations

(DNSs) play an important role in such studies in fluid turbulence [1–3]; such DNSs

have achieved impressive spatial resolutions (see, e.g., Ref. [1]). By contrast, DNS

studies of superfluid turbulence, whether at the level of the Gross-Pitaevskii (GP)

equation (Chapters 2-3 and references therein) or via the Hall-Vinen-Bekharevich-

Khalatnikov (HVBK) equations (Chapter 5 and references therein), have only achieved

modest spatial resolutions. Futhermore, the large number of parameters in these

equations, e.g., the mutual-friction coefficients, the ratio of the normal-fluid density

to the superfluid density, and the Reynolds number, pose a significant challenge

for systematic studies of the multiscaling of nomal-fluid- and superfluid-velocity

structure functions. It has been suggested, therefore, that shell models for the

HVBK equations [4–6] be used first to study such multiscaling in detail. This is

because, ever since their introduction in the early work of Obukhov [7], Desnyan-

sky and Novikov [8], Gledzer, and Ohkitani and Yamada [9, 10], shell models have

193
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played valuable roles in elucidating the multiscaling properties of structure func-

tions of fluid turbulence [1, 11–18]. Over the years, such shell models have been

used to study magnetohydrodynamic (MHD) turbulence [19–24], Hall-MHD turbu-

lence [25–28], fluid turbulence with polymer additives [29], fluid turbulence in two

dimensions [30], fluid turbulence in dimensions in between two and three [31], tur-

bulence in binary-fluid mixtures [32] and in rotating systems [33], and, as we have

mentioned above, turbulence in superfluids [4–6]. Shell models have also been

used to initiate studies of the dynamic multiscaling of time-dependent structure

functions [34–36].

In this Chapter we build on the shell-model studies of Refs. [4–6] to explore the

dependence of the multiscaling exponents here on the parameters of the HVBK

model. It has been noted in Ref. [6] that, given current computational resources,

a systematic study of this parameter dependence lies beyond the scope of a well-

resolved DNS of the three-dimensional (3D) HVBK equations; however, such a

study is possible if we use shell models for the 3D HVBK equations. Our study

extends the work of Refs. [4–6] by obtaining a variety of results that we summarize

before we present the details of our study.

Our extensive study of the 3D HVBK-shell-model shows that the multiscal-

ing behavior of the velocity structure functions in superfluid turbulence is more

complex than that reported in Ref. [6]; however, they agree with those of Ref. [6]

in that, in the limit when the normal-fluid fraction, is either small (pure super-

fluid) or large, the equal-time multiscaling exponents are close to the pure-fluid

values. Moreover, we find that there are two regions, with intermediate values

of the normal-fluid fraction, in which the multiscaling exponents are larger than

those observed for the pure fluid and Kolmogorov’s 1941 (K41) predictions [1]; sep-

arating the above two intermediate ranges is the region in which the multiscaling

exponents are close to the K41 prediction. We have also investigated the depen-

dence of the multiscaling exponents on the mutual-friction coefficient, with equal

proportions of superfluid and normal-fluid components; here, our results show

that, for small (weak-coupling limit) and large (strong-coupling limit) values of

the mutual-friction coefficient, the multiscaling exponents tend to their pure-fluid

values, whereas, in an intermediate range, there are deviations from the pure-fluid

behavior; in particular, the multiscaling exponents are larger than their pure-fluid

counterparts for high-order structure functions (order p ≥ 3).

The rest of this Chapter is organized as follows. In Sec. 6.2 we describe the

model and the numerical methods we use. Section 6.3 is devoted to our results. We

end with conclusions in Sec. 6.4.
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6.2 Models and Numerical Simulations

The GOY shell model for the Navier-Stokes equation [9, 10] is defined through the

equations
[
d

dt
+ νk2m

]
um = ι[akmum+1um+2 + bkm−1um−1um+1 + ckm−2um−1um−2]

∗ + fm, (6.1)

on a logarithmically discretized Fourier space labelled by scalar wave vectors k =

k0λ
m, with k0 = 2−4 and λ = 2, that are associated with the shell m; ∗ denotes

complex conjugation and ν the fluid viscosity. The dynamical variables are the

complex scalar shell velocities um(km), and the coefficients a = 1, b = −δ, c = −(1−δ)
are chosen to conserve the shell-model analogs of energy and helicity in the limit of

vanishing viscosity and absence of external forcing. The standard value of δ = 1/2.

N is the total number of shells. fm is the external forcing that is used to drive the

system into a statistically steady state. The logarithmic discretization of Fourier

space allows us to achieve very high Reynolds numbers, even with a moderate

number of shells. In the GOY-shell-model equations, direct interactions are limited

to the nearest- and next-nearest-neighbour shells, whereas, in the Navier-Stokes

equation in Fourier space, every Fourier mode of the velocity is directly coupled to

every other Fourier mode.

The incompressible, 3D HVBK equations [37] can be written as

ρs

(∂us

∂t
+ us · ∇us

)
= −ρs

ρ
∇p+ ρsσ∇T + Fs

mf , (6.2a)

ρn

(∂un

∂t
+ un · ∇un

)
= −ρn

ρ
∇p− ρnσ∇T + Fn

mf + νn∇2un, (6.2b)

with the incompressibility condition ∇ · ui = 0, the subscript i ∈ (n, s) denotes

the normal fluid (n) or the superfluid (s); p, σ and T are the pressure, specific

entropy, and temperature, respectively; ρn (ρs) is the normal-fluid (superfluid) den-

sity; νi is the normal fluid viscosity. The mutual-friction terms, which model the

interaction between the normal and superfluid components, can be written as

Fs
mf = −(ρn/ρ)fmf and Fn

mf = (ρs/ρ)fmf in Eqs. (6.2a) and (6.2a), respectively, where

fmf =
B

2

ωs

|ωs|
× (ωs × uns) +

B′

2
ωs × uns, (6.3)

with uns = (un−us) the slip velocity, and B and B′ the coefficients of mutual friction.

In most of our studies we set B′ = 0 so, fmf = −B
2
|ωs|uns (Gorter-Mellink form [38]).

The shell model for the HVBK equations, based on the GOY shell model, is [4]
[
d

dt
+ νnk2m

]
unm = NL[unm] + F n

m + fn
m, (6.4)
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[
d

dt
+ νsk2m

]
usm = NL[usm] + F s

m + f s
m, (6.5)

where

NL[um] = i[akmum+1um+2 + bkm−1um−1um+1 + ckm−2um−1um−2]
∗. (6.6)

It is defined on a logarithmically discretized Fourier space labelled by scalar wave

vectors k = k0λ
m with k0 = 2−4 and λ = 2, that are associated with the shells m. νn

and νs are the normal fluid and the superfluid viscosities, respectively. The dynam-

ical variables are the complex scalar shell velocities unm(km) and usm(km), defined for

the normal fluid and the superfluid, respectively. The coefficients a = 1, b = −1/2,

c = −1/2 are chosen to conserve the shell-model analogues of energy and helicity

in the limit of vanishing viscosity and the absence of external forcing. fn
m (f s

m) is

the external forcing that we use to drive the system into a statistically steady state.

The shell-model analogs of the mutual-friction terms, which models the interaction

between the normal and the superfluid components, are

F s
m =

ρnBΩ
1/2
s

2ρ
(unm − usm) (6.7)

and

F n
m = −ρsBΩ

1/2
s

2ρ
(unm − usm). (6.8)

The superfluid and normal-fluid enstrophies, respectively, are defined by

Ωs =
N∑

m=1

1

2
k2m|usm|2 (6.9)

and

Ωn =

N∑

m=1

1

2
k2m|unm|2. (6.10)

The total energy is

ET = En + Es ≡
1

2

N∑

m=1

(
|unm|2 + |usm|2

)
, (6.11)

where En and Es are the normal-fluid and superfluid energies, respectively. Now

we define the shell-model analogs of the statistical quantities, which we use in our

study. The helicity is

Hi =
N∑

m=1

1

2

(a
c

)m |uim|2
km

; (6.12)

the energy spectra are

Ei(km) =
1

2

|uim|2
km

; (6.13)
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the root-mean-square velocity is

uirms =
(∑

m

|uim|2
)1/2

; (6.14)

the Taylor microscale is

λi =

[ ∑
mE

i(km)∑
m k

2
mE

i(km)

]1/2
; (6.15)

the Taylor-microscale Reynold’s number is

Reiλ = urmsλi/νi; (6.16)

the integral length scale is

ℓI =

∑
mE

i(km)/km∑
mE

i(km)
; (6.17)

large-eddy-turnover time is

T i
eddy =

1

k1ui1
; (6.18)

here i ∈ (n, s).

The equal-time, order-p structure functions for the shell model are

Si
p(km) ≡

〈[
uim(t)u

i∗
m(t)

]p/2〉 ∼ k
−ζip
m , (6.19)

where the power-law dependence is obtained only if k−1
m lies in the inertial range

and i ∈ (n, s). The structure functions, as defined above, show period-three os-

cillations because of three cycles in the static solutions of the GOY model for the

Navier-Stokes equation [13]. Therefore, we use the modified structure functions

[12,13]

Σi
p ≡

〈∣∣∣∣ℑ
[
uim+2u

i
m+1u

i
m − 1

4
uim−1u

i
mu

i
m+1

]∣∣∣∣
p/3〉

∼ k
−ζip
m , (6.20)

which filters out these oscillations effectively, i ∈ (n, s). The Sabra-model variant

of the HVBK equations do not show such oscillations. The multiscaling exponents

ζ ip, i ∈ (n, s) must satisfy the convexity inequality for any three positive integers

p1 ≤ p2 ≤ p3 [1]

(p3 − p1)ζ
i
2p2 ≥ (p3 − p2)ζ

i
2p1 + (p2 − p1)ζ

i
2p3 . (6.21)

We obtain a smooth energy spectrum, without period-3 oscillations, by usingEi(km) =

Σi
2(km)/km, i ∈ (n, s).

To obtain a statistically steady state, we force both the components, the super-

fluid and normal fluid, with a force of the form

fn,s
m = (1 + i)× 5× 10−3δ1,m, (6.22)
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ρn/ρ B νn νs ∆t

PG1 − − 10−7 − 10−5

PG2 − − 10−9 − 10−5

G1a 0.0450 1.5260 10−7 10−10 5.0 × 10−6

G1 0.0450 1.5260 10−7 10−9 10−5

G2 0.0998 1.3255 10−7 10−9 10−5

G3 0.2503 1.0765 10−7 10−9 10−5

G4 0.4004 0.9838 10−7 10−9 10−5

G5 0.4994 0.9848 10−7 10−9 10−5

G6 0.6003 1.0447 10−7 10−9 10−5

G7 0.6493 1.1034 10−7 10−9 10−5

G8 0.6995 1.1924 10−7 10−9 10−5

G9 0.7501 1.3267 10−7 10−9 10−5

Table 6.1: Parameters for our 3D shell-model runs (pure-fluid) PG1, PG2 and (HVBK) G1a-G9: ρn/ρ is the

normal-fluid density fraction; B is the mutual-friction coefficient; νn (νs) is the normal-fluid (superfluid) vis-

cosity; ∆t is the incremental time step; we use N = 36 shells in our simulations.

where δ is the Kronecker-delta. We use the second-order, slaved Adams-Bashforth

scheme to integrate the 3D HVBK-GOY-shell-model Eqs. (6.4) and (6.5) [12,39]. To

study the multiscaling behavior of structure functions in the 3D HVBK-GOY-shell-

model, we design three sets of runs.

1. G1a-G9: In these runs, we input the values of ρn/ρ and B at different tempera-

tures measured in experiments on helium II [40]. We use suitable values of νn

and νs, which, along with other parameters, are summarized in the Table 6.1.

2. B1-B19: We vary ρn/ρ between 0.05− 0.95 and keep B = 1.5 fixed.

3. R1-R12: We vary B between 0.1− 10 and keep ρn/ρ = 0.5 fixed.

In the runs B1-B19 and R1-R12 we use νn = 10−7, νs = 10−9, and the time step

∆t = 10−5.

We use the initial condition un,sm = (1 + i)kme
−k2m, for 1 ≤ m ≤ N in the runs

G1a-G9, PG1, and PG2; the GOY-shell-model runs PG1 (νn = 10−7) and PG2 (νn = 10−9)

are included for the purpose of comparison with the runs G1a-G9. In the runs B1-B19

and R1-R12, we use the initial values un,sm = un,s0 k
1/2
m e−k2meiϑm , for 1 ≤ m ≤ N , where

ϑm is a random phase distributed uniformly on [0, 2π). In our shell-model runs, we

use the boundary conditions ui−2 = ui−1 = ui0 = 0 and uiN+1 = uiN+2 = 0, i ∈ (n, s).

We report for N = 36 shells; Ref. [4] uses N = 18 and Ref. [6] presents data with

N = 36.
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λn λs Renλ(×106) Resλ(×108) Tn
eddy T s

eddy

PG1 0.95 − 7.2 − 14.50 −
PG2 0.50 − 310 − 20.33 −
G1a 0.42 0.28 2.3 15 45.61 45.61

G1 0.70 0.51 4.2 3.1 21.80 21.80

G2 0.73 0.54 4.4 3.2 22.03 22.03

G3 0.82 0.61 5.2 3.9 19.83 19.83

G4 0.71 0.54 4.4 3.4 18.41 18.41

G5 0.89 0.70 6.2 4.9 17.15 17.15

G6 0.94 0.77 6.9 5.6 15.45 15.45

G7 0.94 0.78 7.0 5.9 14.94 14.94

G8 0.95 0.80 7.2 6.1 14.51 14.51

G9 0.95 0.82 7.3 6.3 14.42 14.42

Table 6.2: Parameters determined in our shell-model runs PG1, PG2 and G1a-G9: λn (λs) is the Taylor microscale

for the normal-fluid (superfluid); Renλ (Resλ) is the Taylor-microscale Reynold’s number for the normal-fluid

(superfluid); Tn
eddy (T s

eddy) is the large-eddy-turnover time for the normal-fluid (superfluid).

6.3 Results

In Table 6.2 we list the values of the λi, Re
i
λ, and T i

eddy that we obtain from our

3D HVBK-Goy-shell-model simulations PG1, PG2, and G1a-G9. Figure 6.1 compares

En(km) (full curves) and Es(km) (dashed curves) for four representative values of

ρn/ρ (runs G1 (purple curves), G2 (green curves), G5 (sky-blue curves), and G9 (brown

curves)). The inertial ranges of En(km) and Es(km) exhibit scaling that is consistent

with a k−5/3 power-law form (orange, dashed line). The runs PG1 and PG2 together

can be regarded as uncoupled (B = 0) normal fluid and superfluid, respectively;

we use them for the sake of comparison with other runs to show how the mutual

friction modifies the energy spectra. When we couple the normal and superfluid

components, as in the run G1, En(km) is pulled up towards Es(km), by virtue of the

tendency of locking between un and us (see Chapter 5); in contrast, in the absence

of coupling, the spectra E(km) for the runs PG1 (yellow, full curves) and PG2 (yellow,

dashed curves) lie far apart especially in the dissipation range.

We study the multiscaling behaviors of the velocity structure functions Eqs. (6.20)

for the normal fluid and superfluid, obtained from the 3D HVBK-Goy-shell-model.

We extract the multiscaling exponents ζnp and ζsp for the normal fluid and superfluid

components, respectively, by using the Eqs. (6.20). In Table 6.3 we list the values of

these exponents, which we have obtained from Σi
p, for p = 1 to 6, i ∈ (n, s); each row

of this Table has two lines, the first and second lines contain, respectively, the val-

ues of ζnp and ζsp . The Table 6.3 shows that ζnp = ζsp , for p = 1 to 6, for the runs G1-G9,
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Figure 6.1: Log-log (base 10) plots of the spectra En(km) (full curves) and Es(km) (dashed curves) from our

shell-model runs: PG1 and PG2 (yellow curves); G1 (purple curves); G2 (green curves); G5 (sky-blue curves); G9

(brown curves); a k−5/3 power-law is shown by the orange-dashed line. The abbreviation NF (SF) stands for

normal-fluid (superfluid).
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ρn/ρ ζn1 ζn2 ζn3 ζn4 ζn5 ζn6

(B) ζs1 ζs2 ζs3 ζs4 ζs5 ζs6

PG1 − 0.378 ± 0.004 0.704 ± 0.006 0.996 ± 0.009 1.26± 0.01 1.51± 0.02 1.74 ± 0.03

PG2 − 0.383 ± 0.003 0.714 ± 0.005 1.007 ± 0.007 1.27± 0.01 1.52± 0.02 1.75 ± 0.02

G1a 0.0450 0.378 ± 0.008 0.70 ± 0.01 0.99± 0.02 1.26± 0.03 1.50± 0.05 1.73 ± 0.07

(1.5260) 0.378 ± 0.008 0.70 ± 0.01 0.99± 0.02 1.26± 0.03 1.50± 0.05 1.73 ± 0.07

G1 0.0450 0.387 ± 0.003 0.723 ± 0.004 1.024 ± 0.006 1.300 ± 0.008 1.56± 0.01 1.80 ± 0.02

(1.5260) 0.384 ± 0.003 0.721 ± 0.004 1.022 ± 0.006 1.300 ± 0.008 1.55± 0.01 1.80 ± 0.02

G2 0.0998 0.390 ± 0.003 0.732 ± 0.005 1.040 ± 0.007 1.32± 0.01 1.58± 0.02 1.83 ± 0.03

(1.3255) 0.389 ± 0.003 0.731 ± 0.005 1.040 ± 0.007 1.32± 0.01 1.58± 0.02 1.83 ± 0.03

G3 0.2503 0.372 ± 0.006 0.71 ± 0.01 1.02± 0.01 1.32± 0.02 1.60± 0.02 1.86 ± 0.04

(1.0765) 0.372 ± 0.006 0.71 ± 0.01 1.02± 0.01 1.32± 0.02 1.60± 0.02 1.86 ± 0.04

G4 0.4004 0.3309 ± 0.0001 0.6663 ± 0.0001 1.0046 ± 0.0001 1.3446 ± 0.0001 1.6858 ± 0.0002 2.0276 ± 0.0003

(0.9838) 0.3310 ± 0.0001 0.6664 ± 0.0001 1.0044 ± 0.0001 1.3441 ± 0.0001 1.6847 ± 0.0002 2.0259 ± 0.0002

G5 0.4994 0.375 ± 0.004 0.732 ± 0.005 1.079 ± 0.006 1.418 ± 0.008 1.75± 0.01 2.06 ± 0.02

(0.9848) 0.374 ± 0.003 0.732 ± 0.005 1.079 ± 0.006 1.417 ± 0.008 1.74± 0.01 2.06 ± 0.02

G6 0.6003 0.386 ± 0.003 0.737 ± 0.005 1.065 ± 0.007 1.37± 0.01 1.67± 0.02 1.94 ± 0.03

(1.0447) 0.385 ± 0.003 0.737 ± 0.005 1.064 ± 0.007 1.37± 0.01 1.66± 0.02 1.94 ± 0.03

G7 0.6493 0.384 ± 0.003 0.734 ± 0.005 1.060 ± 0.006 1.37± 0.01 1.66± 0.02 1.94 ± 0.03

(1.1034) 0.384 ± 0.003 0.734 ± 0.004 1.060 ± 0.006 1.37± 0.01 1.66± 0.02 1.94 ± 0.03

G8 0.6995 0.383 ± 0.003 0.728 ± 0.004 1.047 ± 0.007 1.35± 0.01 1.63± 0.02 1.90 ± 0.03

(1.1924) 0.383 ± 0.003 0.728 ± 0.004 1.046 ± 0.007 1.35± 0.01 1.63± 0.02 1.90 ± 0.03

G9 0.7501 0.381 ± 0.004 0.718 ± 0.006 1.027 ± 0.008 1.32± 0.01 1.59± 0.02 1.85 ± 0.03

(1.3267) 0.380 ± 0.004 0.718 ± 0.006 1.027 ± 0.008 1.32± 0.01 1.59± 0.02 1.85 ± 0.03

Table 6.3: Multiscaling exponents ζp from our shell-model runs PG1, PG2, and G1 − G9; each row of the Table

has two lines; the first and second lines contain, respectively, the values of ζnp and ζsp. In the second column,

ρn/ρ is the normal-fluid density fraction (first line) and B is the mutual-friction coefficient (second line, in

parentheses).

because of the mutual-friction-induced locking of the normal fluid and superfluid

velocities in the inertial range.

Figures 6.2 (a) and (b) show plots of ζnp and ζsp versus order p, respectively; in

these plots the orange line is the K41 prediction ζK41
p = p/3 and the yellow line

shows the multiscaling behavior of the pure fluid (classical turbulence) ζcp. We

find that the multiscaling exponents ζ ip, i ∈ (n, s), determined from the 3D HVBK-

GOY-shell-model, show deviations from the pure-fluid behavior ζcp; these deviations

depend on the values of ρn/ρ and B. Moreover, for the run G4 (ρn/ρ = 0.4, B =

0.9838) the ζ ip’s (green lines in Figs. 6.2 (a) and (b)) are close to ζK41
p = p/3. For

the run G3 (ρn/ρ = 0.25, B = 1.08), the ζ ip’s (purple lines in Figs. 6.2 (a) and (b))

lie roughly between ζK41
p and ζcp; whereas, for the runs G5-G7, the behavior of ζ ip,

relative to ζK41
p and ζcp, depends on the order p.

To understand the dependence of the multiscaling exponents ζ ip, i ∈ (n, s), on

ρn/ρ (which includes the variation of B with temperature), we plot, in Fig. 6.3, ζnp ,

for p = 1 to 6, versus ρn/ρ from our runs G1-G9. Figure 6.3 shows that, depending on
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Figure 6.2: Plots versus order p of the multiscaling exponents: (a) ζnp and (b) ζsp , for the shell-model runs G3

(purple curve), G4 (green curve), G5 (sky-blue curve), G6 (brown curve), and G7 (magenta curve). PG1, PG2 are

the pure-fluid runs (yellow curve) and ζK41 = p/3 is denoted by the orange line.
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Figure 6.3: Plots of ζnp , for p = 1 to 6, versus ρn/ρ, from our shell-model runs G1-G9. For the purpose of

reference, we show the value of a pure-fluid exponent ζcp, for order p, by a horizontal, dashed line; different

colors indicate different values of the order p. The black, dot-dashed lines indicates ζK41
p = p/3.
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the values of ρn/ρ, the behavior of the exponents ζnp can be classified roughly into

five categories I-V (demarcated by grey, dashed, vertical lines on the plot), which

we describe below.

1. Region I (ρn/ρ . 0.1): The values of ζnp are close to the pure-fluid exponents ζcp.

2. Region II (0.1 < ρn/ρ < 0.3): ζnp > ζcp, for p ≥ 3 and, for p = 1, 2, ζnp ≃ ζcp.

3. Region III (0.3 . ρn/ρ . 0.4): ζnp ≃ ζK41
p .

4. Region IV (0.4 < ρn/ρ . 0.65): ζnp show significant deviations from both ζcp and

ζK41
p .

5. Region V (ρn/ρ > 0.65): ζnp show a tendency to move towards ζcn.

To determine the dependence of the multiscaling exponents ζ ip, i ∈ (n, s), on ρn/ρ,

while keeping the coefficient of mutual friction B = 1.5 fixed, we perform a set of

3D-HVBK-GOY-shell-model runs B1-B19, where we systematically scan across the

values of ρn/ρ. These runs allow us to classify the behavior of ζ ip, i ∈ (n, s), as a

function of ρn/ρ, more clearly than the runs G1-G9. In Table 6.4 we present the

values of the ζ ip, i ∈ (n, s), which we extract from Σi
p (Eq. 6.20), for p = 1 to 6,

i ∈ (n, s); each row of this Table has two lines; the first and second lines contain

the values of ζnp and ζsp , respectively. For these runs ζnp ≃ ζsp . In Fig. 6.4 we plot,

versus ρn/ρ ζ
n
p , for p = 1 to 6, which we have obtained from the runs B1-B19. The

plots of ζnp versus ρn/ρ show two regions (0.1 < ρn/ρ < 0.3 and 0.4 < ρn/ρ < 0.65)

with clear bumps, where the values of ζnp deviate significantly from both ζK41
p < ζnp

and ζcp < ζnp . We classify roughly the behavior of these ζnp into six categories I-VI

(demarcated by grey, dashed, vertical lines on the plot), which we describe below:

1. Region I (ρn/ρ . 0.1): ζnp ≃ ζcp.

2. Region II (0.1 < ρn/ρ < 0.3): ζnp show significant deviations from both ζcp < ζnp
and ζK41

p < ζnp .

3. Region III (0.3 . ρn/ρ . 0.4): ζnp ≃ ζK41
p .

4. Region IV (0.4 < ρn/ρ < 0.65): ζnp show significant deviations from both ζcp < ζnp
and ζK41

p < ζnp .

5. Region V (0.65 & ρn/ρ < 0.75): ζnp show a tendency to move towards ζcn values.

6. Region VI (ρn/ρ & 0.75): ζnp ≃ ζcp.

We also explore the dependence of the multiscaling exponents ζ ip, i ∈ (n, s), on

the mutual-friction coefficient B, while keeping the normal-fluid-density fraction
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ρn/ρ ζ1 ζ2 ζ3 ζ4 ζ5 ζ6

B1 0.05 0.387 ± 0.002 0.724 ± 0.004 1.026 ± 0.006 1.303 ± 0.009 1.56 ± 0.02 1.80 ± 0.03

0.384 ± 0.002 0.720 ± 0.004 1.023 ± 0.006 1.301 ± 0.009 1.56 ± 0.02 1.80 ± 0.03

B2 0.10 0.389 ± 0.003 0.732 ± 0.004 1.042 ± 0.006 1.328 ± 0.009 1.59 ± 0.02 1.84 ± 0.02

0.388 ± 0.003 0.733 ± 0.004 1.045 ± 0.005 1.333 ± 0.008 1.60 ± 0.01 1.85 ± 0.02

B3 0.15 0.402 ± 0.002 0.766 ± 0.004 1.111 ± 0.006 1.44 ± 0.01 1.75 ± 0.02 2.05 ± 0.03

0.395 ± 0.002 0.761 ± 0.004 1.107 ± 0.006 1.44 ± 0.01 1.75 ± 0.02 2.05 ± 0.03

B4 0.20 0.380 ± 0.003 0.733 ± 0.005 1.071 ± 0.006 1.399 ± 0.008 1.72 ± 0.01 2.02 ± 0.02

0.376 ± 0.003 0.730 ± 0.005 1.069 ± 0.006 1.397 ± 0.008 1.71 ± 0.01 2.02 ± 0.02

B5 0.025 0.364 ± 0.002 0.711 ± 0.004 1.053 ± 0.005 1.392 ± 0.009 1.73 ± 0.01 2.05 ± 0.02

0.360 ± 0.002 0.708 ± 0.004 1.051 ± 0.005 1.390 ± 0.007 1.72 ± 0.01 2.05 ± 0.02

B6 0.30 0.334 ± 0.002 0.672 ± 0.002 1.011 ± 0.002 1.351 ± 0.002 1.690 ± 0.003 2.024 ± 0.09

0.334 ± 0.002 0.671 ± 0.002 1.010 ± 0.002 1.350 ± 0.002 1.688 ± 0.003 2.01 ± 0.009

B7 0.35 0.345 ± 0.001 0.683 ± 0.002 1.021 ± 0.002 1.359 ± 0.003 1.696 ± 0.005 2.03 ± 0.01

0.3385 ± 0.0009 0.677 ± 0.001 1.015 ± 0.002 1.355 ± 0.003 1.693 ± 0.005 2.02 ± 0.01

B8 0.40 0.340 ± 0.002 0.679 ± 0.002 1.019 ± 0.003 1.359 ± 0.003 1.695 ± 0.006 2.03 ± 0.01

0.339 ± 0.001 0.680 ± 0.002 1.021 ± 0.002 1.361 ± 0.002 1.699 ± 0.006 2.03 ± 0.01

B9 0.45 0.365 ± 0.002 0.712 ± 0.002 1.057 ± 0.003 1.397 ± 0.006 1.73 ± 0.01 2.05 ± 0.02

0.353 ± 0.001 0.699 ± 0.002 1.046 ± 0.003 1.389 ± 0.005 1.72 ± 0.01 2.05 ± 0.03

B10 0.50 0.376 ± 0.002 0.727 ± 0.002 1.072 ± 0.004 1.410 ± 0.007 1.74 ± 0.01 2.06 ± 0.03

0.365 ± 0.002 0.720 ± 0.002 1.068 ± 0.004 1.408 ± 0.007 1.74 ± 0.01 2.05 ± 0.03

B11 0.55 0.382 ± 0.002 0.734 ± 0.003 1.078 ± 0.004 1.415 ± 0.006 1.74 ± 0.01 2.05 ± 0.03

0.370 ± 0.002 0.727 ± 0.003 1.075 ± 0.004 1.414 ± 0.007 1.74 ± 0.01 2.06 ± 0.03

B12 0.60 0.380 ± 0.003 0.735 ± 0.005 1.074 ± 0.008 1.40 ± 0.01 1.72 ± 0.02 2.03 ± 0.03

0.379 ± 0.003 0.734 ± 0.005 1.073 ± 0.008 1.40 ± 0.01 1.72 ± 0.02 2.03 ± 0.03

B13 0.65 0.379 ± 0.003 0.724 ± 0.004 1.048 ± 0.006 1.36 ± 0.01 1.65 ± 0.02 1.93 ± 0.03

0.378 ± 0.003 0.723 ± 0.004 1.047 ± 0.006 1.36 ± 0.01 1.65 ± 0.02 1.93 ± 0.03

B14 0.70 0.375 ± 0.004 0.714 ± 0.007 1.02± 0.01 1.31 ± 0.02 1.58 ± 0.03 1.82 ± 0.05

0.375 ± 0.005 0.714 ± 0.007 1.02± 0.01 1.31 ± 0.02 1.58 ± 0.03 1.82 ± 0.05

B15 0.75 0.371 ± 0.004 0.706 ± 0.006 1.012 ± 0.009 1.30 ± 0.02 1.56 ± 0.03 1.80 ± 0.04

0.371 ± 0.004 0.705 ± 0.006 1.012 ± 0.009 1.30 ± 0.02 1.56 ± 0.03 1.80 ± 0.04

B16 0.80 0.370 ± 0.004 0.697 ± 0.006 0.998 ± 0.009 1.28 ± 0.01 1.54 ± 0.02 1.80 ± 0.04

0.369 ± 0.004 0.697 ± 0.006 0.998 ± 0.009 1.28 ± 0.01 1.54 ± 0.02 1.80 ± 0.04

B17 0.85 0.371 ± 0.003 0.698 ± 0.005 0.998 ± 0.007 1.28 ± 0.01 1.54 ± 0.02 1.79 ± 0.03

0.371 ± 0.003 0.698 ± 0.005 0.998 ± 0.007 1.28 ± 0.01 1.54 ± 0.02 1.79 ± 0.03

B18 0.90 0.372 ± 0.004 0.699 ± 0.006 0.996 ± 0.008 1.27 ± 0.01 1.53 ± 0.02 1.77 ± 0.04

0.372 ± 0.004 0.698 ± 0.006 0.996 ± 0.008 1.27 ± 0.01 1.53 ± 0.02 1.77 ± 0.04

B19 0.95 0.374 ± 0.004 0.700 ± 0.006 0.994 ± 0.008 1.266 ± 0.01 1.52 ± 0.02 1.75 ± 0.03

0.374 ± 0.004 0.699 ± 0.006 0.994 ± 0.008 1.265 ± 0.01 1.52 ± 0.02 1.75 ± 0.03

Table 6.4: Multiscaling exponents ζp from our shell-model runs B1-B19; each row of the Table has two lines; the

first and second lines contain, respectively, the values of ζnp and ζsp . ρn/ρ is the normal-fluid density fraction;

we keep the mutual-friction coefficient B = 1.5 fixed.
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Figure 6.4: Plots of ζnp , for p = 1 to 6, versus ρn/ρ, from our shell-model runs B1-B19. For the purpose of

reference, we show the value of a pure-fluid exponent ζcp, for order p, by a horizontal, dashed line; different

colors indicate different values of the order p. The black, dot-dashed lines indicates ζK41
p = p/3. In the shell-

model runs B1-B19, we keep the mutual-friction coefficient B = 1.5 fixed.
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B ζ1 ζ2 ζ3 ζ4 ζ5 ζ6

R1 0.10 0.371 ± 0.007 0.71 ± 0.01 1.03 ± 0.02 1.33± 0.03 1.61 ± 0.04 1.89± 0.06

0.370 ± 0.007 0.71 ± 0.01 1.03 ± 0.02 1.33± 0.03 1.61 ± 0.04 1.89± 0.06

R2 0.50 0.366 ± 0.007 0.708 ± 0.01 1.04 ± 0.02 1.36± 0.02 1.67 ± 0.04 1.98± 0.05

0.366 ± 0.007 0.708 ± 0.01 1.04 ± 0.02 1.36± 0.02 1.67 ± 0.04 1.98± 0.05

R3 0.80 0.348 ± 0.002 0.691 ± 0.002 1.034 ± 0.003 1.376 ± 0.004 1.715 ± 0.007 2.05± 0.01

0.347 ± 0.002 0.691 ± 0.002 1.033 ± 0.003 1.374 ± 0.004 1.712 ± 0.007 2.04± 0.01

R4 1.00 0.346 ± 0.001 0.688 ± 0.002 1.031 ± 0.002 1.370 ± 0.004 1.704 ± 0.008 2.03± 0.02

0.345 ± 0.001 0.688 ± 0.002 1.030 ± 0.002 1.368 ± 0.004 1.700 ± 0.008 2.02± 0.02

R5 1.25 0.361 ± 0.002 0.711 ± 0.002 1.057 ± 0.004 1.397 ± 0.006 1.73 ± 0.01 2.05± 0.02

0.359 ± 0.002 0.710 ± 0.002 1.056 ± 0.004 1.394 ± 0.006 1.72 ± 0.01 2.04± 0.02

R6 1.50 0.372 ± 0.002 0.727 ± 0.003 1.072 ± 0.005 1.408 ± 0.008 1.73 ± 0.01 2.04± 0.03

0.370 ± 0.002 0.725 ± 0.003 1.070 ± 0.005 1.405 ± 0.008 1.73 ± 0.01 2.04± 0.03

R7 1.75 0.384 ± 0.002 0.743 ± 0.004 1.086 ± 0.006 1.418 ± 0.009 1.74± 0.002 2.04± 0.03

0.382 ± 0.002 0.742 ± 0.004 1.086 ± 0.006 1.417 ± 0.009 1.73± 0.002 2.04± 0.03

R8 2.00 0.382 ± 0.003 0.738 ± 0.004 1.078 ± 0.006 1.404 ± 0.009 1.72 ± 0.02 2.01± 0.03

0.382 ± 0.003 0.738 ± 0.004 1.077 ± 0.006 1.403 ± 0.009 1.73 ± 0.02 2.01± 0.03

R9 4.00 0.376 ± 0.004 0.720 ± 0.007 1.04 ± 0.01 1.34± 0.02 1.61 ± 0.03 1.87± 0.05

0.376 ± 0.004 0.720 ± 0.007 1.04 ± 0.01 1.34± 0.02 1.61 ± 0.03 1.87± 0.05

R10 6.00 0.368 ± 0.004 0.699 ± 0.006 1.008 ± 0.008 1.30± 0.01 1.58 ± 0.02 1.84± 0.04

0.368 ± 0.004 0.699 ± 0.006 1.008 ± 0.008 1.30± 0.01 1.58 ± 0.02 1.84± 0.04

R11 8.00 0.370 ± 0.004 0.699 ± 0.006 1.000 ± 0.009 1.28± 0.02 1.54 ± 0.02 1.79± 0.04

0.370 ± 0.004 0.699 ± 0.006 1.000 ± 0.009 1.28± 0.01 1.54 ± 0.02 1.79± 0.04

R12 10.0 0.370 ± 0.004 0.696 ± 0.006 0.993 ± 0.009 1.27± 0.01 1.52 ± 0.02 1.76± 0.04

0.370 ± 0.004 0.696 ± 0.006 0.992 ± 0.009 1.27± 0.01 1.52 ± 0.02 1.76±0.04

Table 6.5: Multiscaling exponents ζp from our shell-model runs R1-R12; each row of the Table has two lines;

the first and second lines contain, respectively, the values of ζnp and ζsp. B is the mutual-friction coefficient; we

keep the normal-fluid-density fraction ρn/ρ = 0.5 fixed.

ρn/ρ = 0.5 fixed. In the 3D-HVBK-GOY-shell-model runs R1-R12, we systematically

vary the values of B; we list the values of ζ ip, i ∈ (n, s) obtained from Σi
p (Eq. 6.20),

for p = 1 to 6, i ∈ (n, s), in Table 6.5; each row of this Table has two lines; the

first and second lines contain, respectively, the values of ζnp and ζsp . In Fig. 6.5 we

plot versus B ζnp , for p = 1 to 6, which we have obtained from the runs R1-R12. We

find that ζnp deviate from their pure-fluid counterparts ζcp significantly, in the range

1 ≤ B ≤ 3, with ζnp > ζcp, for p ≥ 3; in the above range, ζn1 < ζc1, whereas ζn2 is

marginally larger than ζc2. As B → 0.1 (small values) and B → 10 (large values) the

multiscaling exponents ζnp ≃ ζcp, because, in the limit B → 0, the normal fluid and

superfluid are uncoupled; and for very large values of B, the coupling is so strong

that single-fluid behavior emerges.
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Figure 6.5: Plot of ζnp , for p = 1 to 6, versus ρn/ρ, from the shell-model runs R1-R12. For the purpose of

reference, we show the value of a pure-fluid exponent ζcp, for order p, by a horizontal, dashed line; different

colors indicate different values of order p. The black, dot-dashed lines indicates ζK41
p = p/3. In the shell-model

runs R1-R12, we keep the normal-fluid density fraction ρn/ρ = 0.5 fixed.
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Figure 6.6: Plots of (a) fn
cvx for the runs B1-B19 (B = 1.5); (b) fn

cvx for the runs R1-R12 (ρn/ρ = 0.5); where

f i
cvx = (p3 − p1)ζ

i
2p2 − (p3 − p2)ζ

i
2p1 − (p2 − p1)ζ

i
2p3 , i ∈ (n, s), and we take p1 = 1, p2 = 2, and p3 = 3. The

multiscaling exponents ζip, i ∈ (n, s), satisfy the convexity constraint, if f i
cvx > 0, for any three positive integers

p1 ≤ p2 ≤ p3. The x-axis label in the above plots indicates the run index, e.g., B1.

We have checked explicitly that all the values of ζnp and ζsp , which we have re-

ported above, satisfy the convexity inequality Eq. (6.21). We illustrate this in the

plots of Fig. 6.6.

6.4 Conclusions

We have carried out extensive numerical simulations of the 3D-HVBK-GOY-shell-

model, specifically to study the multiscaling behavior of the structure functions in

superfluid turbulence. The study of the multiscaling of structure functions, is still

in its infancy in superfluid turbulence; however, it has benefited from experimental

investigations in liquid helium, which have shown the existence of multiscaling, in

the inertial range, below the superfluid transition temperature Tλ [41–43]. The

experimental observation of multiscaling of the structure functions, provides the

motivation to carry out detailed theoretical and numerical investigations of the

multiscaling behavior of structure functions in superfluid turbulence. The DNS

studies based on the phenomenological models, such as, the Gross-Pitaevskii equa-

tion and the HVBK two-fluid equations, have not been able to cover the large range

of length scales that are required to obtain reliable data for high-order structure

functions. The shell models based on the HVBK two-fluid equations have already

been used to study the statistical properties of 3D superfluid turbulence in both
4He [4,6] and 3He-B [4,5]; these studies have elucidated the nature of energy spec-

tra and fluxes, in the case of both forced and decaying superfluid turbulence. The

only detailed investigation of the multiscaling behavior of structure functions, is
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an HVBK-shell-model study [6]; this study has shown that, for ρn/ρ ≤ 0.1 and

ρn/ρ ≤ 0.9, the multiscaling exponents are close to those of a pure-fluid, whereas,

in the range 0.25 ≤ ρn/ρ ≤ 0.5, the high-order mutliscaling exponents deviate sig-

nificantly from, and are smaller than, their pure-fluid counterparts.

Our extensive study of the 3D HVBK-GOY-shell-model shows that the multi-

scaling behavior of the structure functions in superfluid turbulence is more com-

plex than that reported in Ref. [6]. However, our results agree with those of

Ref. [6] in that, for ρn/ρ . 0.1 and ρn/ρ & 0.75, the multiscaling exponents are

close to the pure-fluid values. Moreover, we find that there are two regions, with

0.1 < ρn/ρ < 0.3 and 0.4 < ρn/ρ < 0.65, where the multiscaling exponents are larger

than the pure-fluid and K41 values, i.e., ζ ip > ζcp and ζ ip > ζK41
p , i ∈ (n, s); also, in the

range 0.3 . ρn/ρ . 0.4, the multiscaling exponents are close to the K41 prediction

ζ ip ≃ ζK41
p . We have also investigated the dependence of the multiscaling exponents

on the mutual friction coefficient B, while keeping ρn/ρ = 0.5 fixed; here, our re-

sults, show that, for small (weak-coupling limit) and large (strong-coupling limit)

values of B, the multiscaling exponents tend to their pure-fluid values, whereas,

in the range 1 . B . 3, there are deviations from the pure-fluid behavior ζ ip > ζcp,

for p ≥ 3, i ∈ (n, s). We hope our extensive study of the multiscaling of structure

functions in the 3D-HVBK-GOY shell model will stimulate detailed experimental

and DNS studies of such multiscaling.
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