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Chapter 1

Introduction

In the year 1924, S.N. Bose proposed a proper derivation of the Planck’s
radiation law treating photons as indistinguishable particles, which obeyed a
counting scheme devised by him. Then a year later, in 1925, Einstein gener-
alized this new scheme of counting to include a gas of atoms, whose number
is always conserved. Einstein went further, and showed that a gas of atoms
obeying this new scheme (Bose-Einstein statistics) would suddenly populate
the ground state of the system below a certain temperature in observably
large numbers. This macroscopic occupation of the ground state is a quan-
tum phase transition, but a one which is purely due to quantum statistical
effect, occurring without any inter-particle interaction. This phenomenon
was given the name “Bose-Einstein condensation (BEC).” The phenomenon
is not limited to an ideal system, it occurs in a gas of interacting atoms too.
This seemingly strange phase transition waited it’s verification almost sev-
enty years till 1995, when Bose-Einstein condensation was realized in labs in
dilute alkali gases of 87Rb and 23Na atoms cooled in gaseous state down to
nano-kelvin and confined in space by an inhomogeneous magnetic field. In
fact, BEC in an interacting gas exposes much more richer physics because
the interactions may be tuned, the sign as well as strength, at ones will.

The experimental realization of BEC requires the confinement of the bosons
in a limited region with the help of some external trapping potentials. BEC
of trapped atomic gases like Na, Li etc. are the macroscopic objects which
behave according to the laws of quantum mechanics. An interesting situ-
ation emerges when the condensate is trapped using some arrangement of
laser lights. Such a trap in one dimension can be realized when two coherent
counter propagating laser beams interfere. This results in a standing wave
with a periodic variation of intensity. The laser light induces an electric
dipole moment in the atoms of the condensate, thus modifying their energy.

1



CHAPTER 1. INTRODUCTION 2

The trapping configuration can be extended to two- or three-dimension by
the use of additional laser beams from different directions. Laser beams in
standing wave configuration provide ideal periodic potential for the atoms,
these periodic potentials can be regarded as a lattice for the condensate atoms
in an analogy with lattices in the real crystalline solids.

The study of Bose-Einstein condensates in optical potentials is multifaced
and offers an opportunity to uncover the intriguing properties of coherent
matter waves. Optical lattices provide a testing ground for the quantum
theory of solids. At the simplest level, it is possible to study the energy
band structure of atoms moving in these potentials and to explore experi-
mentally a number of effects that are difficult to observe for electrons in a
periodic solid. The interactions among the condensate atoms introduce many
novel features in the band structure which can be tackled in the mean-field
regime provided there are sufficiently large number of atoms in the vicinity
of a single minimum of potential [4]. The most fascinating aspect of this
system is that almost all experimental parameters can be controlled with
a high degree of precision. The lattice spacing, for example, can be con-
trolled through the wavelength and the angle of the interfering laser beams,
the lattice depth is adjustable over a wide range through the intensity of
the interfering laser beams. This great control offers the unique possibility
of modeling systems that resemble real crystalline lattices, but with lattice
constants, barrier heights and interaction parameters that can be varied ex-
perimentally. Another very beautiful and important fact is that, even the
dimensionality of these systems are controlled, the tight confinement achiev-
able with an optical lattice restricts the motion of the atoms in two or one
dimensional region thereby presenting before us another opportunity to study
the physics of these one or two dimension systems experimentally. A very
interesting variation to the above systems would be to consider the effects of
rotation. Under rotation, many new properties of the condensate in an optical
lattice may emerge. One may study for an example, how the band structure
would get modified by the inclusion of a rotation term in the hamiltonian
of the system. Thus, the present study aims at studying and understanding
the new physics which may come out by considering the condensates in a
rotating optical lattice.

The entire dissertation has been divided into five chapters. The first chap-
ter presents the motivation for the entire work in a very broad manner.
Chapter 2 introduces the phenomenon of Bose-Einstein condensation, and
then goes on to describe the theory for the interacting condensates, con-
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fining potentials and the one- and two-dimensional condensates in sufficient
detail. Optical lattice has been explained using simple arguments. Then to-
wards the end the numerical algorithm to study the ground state properties
has been discussed at appropriate length. In chapter 3 the theory required to
understand the condensate properties in a rotating optical lattice has been
put up, an effort has been made to give the essential basic physics involved
in the problem. The chapter 4 contains the main results obtained during the
entire period of study. Chapter 5 presents the conclusions of the study.



Chapter 2

Bose-Einstein condensation

2.1 The Phenomenon and its effective theory

Non-interacting systems

To elaborate the phenomenon of Bose-Einstein condensation, consider an
ideal Bose gas of N particles occupying a volume V . Let No and N ′ be
the number of particles in the lowest one-particle state (momentum p = 0)
and the number of particles in the higher states (p 6= 0) respectively. Then,
following the Bose-Einstein statistics

N =
∑

i

1

eβ(εi−µ) − 1
, (2.1)

where εi is the one-particle energy levels and β = 1/kT . Also,

N = No +N ′ (2.2)

with

No =
1

e−βµ
, N ′ =

∑

i6=0

1

eβ(εi−µ) − 1
, (2.3)

where the degeneracy of the lowest energy state ε0 = 0 has been taken
to be unity. Using the density of states expression for the free particles
D(ε) = 2πV (2m/h2)3/2ε1/2

N ′ = 2
(

2m

h2

)3/2 ∫ ∞

0

ε1/2dε

eβ(ε−µ) − 1

= V

(

2πmkT

h2

)3/2
2√
π

∫ ∞

0

x1/2dx

ex−βµ − 1

= V

(

2πmkT

h2

)3/2

F3/2(α), (α = −βµ). (2.4)

4



CHAPTER 2. BOSE-EINSTEIN CONDENSATION 5

The above expression has no contribution from the lowest energy state ε =
0, since the density of states is zero here. This is why No was mentioned
separately in the Equation (2.2). Moreover, the function F3/2(α) has the
form

F3/2(α) ≡ 2√
π

∫ ∞

0

x1/2dx

ex+α − 1
=

∞
∑

n=1

e−nα/n3/2 (2.5)

and is defined only in the region α = −βµ > 0. So, F3/2(α) is a monotonically
decreasing function:

F3/2(α) ≤ F3/2(0) =
∞
∑

n=1

n− 3

2 = 2.612. (2.6)

Hence equation (2.4) takes the form,

N ′ < V

(

2πmkT

h2

)
3

2

× 2.612 = N ′
max(T ). (2.7)

This condition, Eq. (2.7), signifies that there is an upper limit to the number
of particles in the higher states at a given temperature, and as the temper-
ature of the gas is lowered this saturation limit decreases further. When
N ′

max(T ) becomes lower than the total number of particles N , the remain-
ing N − N ′

max(T ) particles have no other option but to move to the lowest
energy state ε = 0. The temperature at which N ′

max becomes equal to the to-
tal number of particles, defines the critical temperature for the Bose-Einstein
condensation to occur. Thus, at low enough temperature a macroscopic frac-
tion of the total population may accumulate in the lowest energy state and
form what is known as the Bose-Einstein condensate.

Interacting systems

Following the brief discussion of the phenomenon of Bose-Einstein condensa-
tion in an ideal bose gas, at the next level of complexity is the occurrence of
the same in a system of weakly interacting trapped bose gas. Similar to the
ground state of an ideal Bose gas, a dilute weakly interacting Bose gas at low
temperature should have nearly all of the particles in the condensate i.e. in
the same single-particle state. Thus at absolute zero temperature a conden-
sate of No particles behaves as a single macroscopic quantum object and is
described by a macroscopic matter wavefunction Ψ(r, t). The most simplistic
picture allows one to write the many body wavefunction a No fold product
of single particle wavefunction. The condensate represented by Ψ(r, t) when
treated in the mean-field approximation, satisfies a non-linear Schrödinger
equation as explained below.
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2.1.1 The Gross-Pitaevskii equation

Condensate atoms may be taken to be interacting by means of binary col-
lisions. Since the atoms in the condensate are extremely cold only s−wave
scattering is important. The condition that the gas is dilute, the interac-
tions can be modeled by a zero-range potential whose strength is determined
by the s−wave scattering length a. In this case each atom feels an addi-
tional potential due to mean field of all other atoms present. Potential being
proportional to the local atomic density can be included in the Schrödinger
equation to account for the atom-atom interactions [5,8]. The discussion so
far leads to the following nonlinear Schrödinger equation,

ιh̄
∂Ψ(r, t)

∂t
=

[

− h̄2

2m
∇2 + Vext(r) +NoUo|Ψ(r, t)|2

]

Ψ(r, t), (2.8)

where ∫

|Ψ(r, t)|2dr = 1. (2.9)

This equation, known as the Gross-Pitaevskii (GP) equation, was de-
rived independently by Gross (1961) and Pitaevskii (1961). This is not the
many body wavefunction for N bosons which is a function of N coordinates
(r1, .., rN). The coefficient of the non-linear term is given by Uo = 4πh̄2a/m,
where m is the mass of the condensate atom. The condensate atoms repel
each other or attract each other depending on whether a is positive or neg-
ative. The validity of the above equation is based on the condition that the
s−wave scattering length should be much smaller than the average distance
between the atoms. Since the Eq.(2.8) was derived under dilute-gas approx-
imation, this fact can be expressed in terms of a dimensionless parameter,
n̄|a|3 (where n̄ is the average density of the gas), the number of particles in
“scattering volume”|a|3. For a dilute or weakly interacting system n̄|a|3 ≪ 1
[8].

The wavefunction describing the stationary state of the condensate can be
written as

Ψ(r, t) = ψ(r)e−ιµt, (2.10)

where µ is the chemical potential of the condensate system and ψ is the real
valued normalized function independent of time. Then, the Gross-Pitaevskii
equation takes the form

(

− h̄2

2m
∇2 + Vext(r) +NoUo|ψ|2

)

ψ(r) = µψ(r). (2.11)
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The equation (2.11) is the time-independent Gross-Pitaevskii equation. It
must be noted that in the present case eigenvalue is the chemical potential
and not the energy per particle as in the case of usual Schrödinger equa-
tion. This due to the fact that here one is dealing with a many body state
(with majority of particles in the same state) unlike a single particle state.
Thus, this is a non-linear Schrödinger equation with non-linearity stemming
from the interaction among the atoms treated at mean field level, which is
proportional to the particle density |ψ(r)|2.

2.2 Condensates under confining potentials

An important feature of the dilute BEC experiments is the three-dimensional
trapping used to spatially confine the atoms. This trapping causes the sys-
tem to have a finite size. The confinement is most commonly harmonic,
formed by magnetic fields. However, other shapes of potential, including
gaussian, quartic, step-like, and periodic lattice potentials, can be generated
by magnetic and/or optical means.

2.2.1 Harmonic confinement

A three-dimensional harmonic trapping potential can be written as,

Vext(r) =
m

2
(ω2

xx
2 + ω2

yy
2 + ω2

zz
2) (2.12)

where ωx, ωy and ωz are the angular trap frequencies in x, y, and z
directions respectively. In the case of a non-interacting ideal gas confined
by a 3D harmonic potential, the energy states are the standard harmonic
oscillator states. The ground state condensate wavefunction is a gaussian

ψ(r) = (
mω̄

πh̄
)3/4exp(−m

2h̄
(ωxx

2 + ωyy
2 + ωzz

2)) (2.13)

with the geometric mean frequency ω̄ = (ωxωyωz)
1/3. In the case of interact-

ing BEC mean field approach is used to obtain the state of the system.

2.2.2 Dimension reduction

In most BEC experiments the atoms are placed in three-dimensional traps
which allow them to have a three-dimensional motion. But by deliberately
introducing the anisotropy in the trap geometry it is possible to control



CHAPTER 2. BOSE-EINSTEIN CONDENSATION 8

the effective dimensionality of the condensate. In this way one- or two-
dimensionally confined atomic gas may be produced. In fact, one- and two-
dimensional condensates have been realized in elongated and flattened ge-
ometries, respectively.

One-dimensional condensates

Consider a cylindrically-symmetric trap geometry V (r) = 1
2
m(ω2

rr
2 + ω2

zz
2),

where ωz and ωr are the longitudinal and radial trap frequencies, respectively.
For, ωr ≫ ωz, the energy states for the radial direction are very widely spaced
as compared to the chemical potential of the system of the system, and so the
transverse high-energy modes become ineffective from the point of view of
the transverse dynamics. Hence, in this regime longitudinal dynamics, with
associated low energy, dominates the system and an effective one-dimensional
condensate is formed. In addition to this, the thermal energy kBT must
satisfy the condition kBT ≪ h̄ωr to prevent the thermal excitation of the
transverse states.

In effective 1D configuration the radial component of the condensate wave-
function can be approximated by the harmonic oscillator ground state,

ψ(r) = (mωr/h̄π)1/2exp[−mωrr
2/2h̄], (2.14)

with
∫ |ψ(r)|22πrdr = 1. The approximation improves with the tighter trans-

verse confinement. Hence, the wavefunction may be expressed as

ψ(r, z, t) = ψz(z, t)ψ(r). (2.15)

Two-dimensional condensates

When ωz ≫ ωr, the energy states for the z−direction are very widely spaced
and so the condensate may be assumed to always remain in the harmonic
oscillator ground state for this direction. Under this situation the condensate
takes a highly flattened “pancake-”shape.

2.2.3 Optical confinement

The harmonic confinement discussed above was achieved using some arrange-
ment of magnetic fields in magnetic traps. In the later experiments on the
BEC people were able to confine cold bosonic atoms using optical fields, since
for cold enough atoms the dipole force offers the possibility of strong con-
finement. These optical fields can also be manipulated to create a periodic
confining potential known as “optical lattice.”
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Figure 2.1: (a)1D Cigar-shaped (b)2D Pancake shaped Bose-Einstein con-
densates

2.3 Length and energy scales

The hierarchy of energy and length scales for trapped gaseous Bose-Einstein
condensates simplifies the description of these quantum objects. For each
energy E, a length l is defined by the relation E = h̄2/2ml2.

In the condensate the separation between atoms is equal to or smaller
than the thermal de-Broglie wavelength. The largest length scale involved in
the problem is the confinement, either characterized by the size of the trap

potential or by the oscillator length lsho =
√

h̄/mω which is the size of the
ground state wavefunction in a harmonic oscillator potential with frequency
ω. The atom-atom interactions are described by a mean-field energy Uo =
4πh̄2na/m, where n is the density. The length scale associated with this
energy is known as the healing length, and is determined by the balance of
the kinetic energy and the mean-field interaction energy.

h̄2

2mξ2
=

4πh̄2na

m
(2.16)
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It gives the expression for the healing length as,

ξ = (8πna)−1/2. (2.17)

Healing length represents the distance over which the condensate approaches
its bulk density when it is subjected to a local perturbation. In the case of
rotating condensates the size of the vortex core is determined by the healing
length,ξ.

2.4 Optical lattices

Optical lattices in one-dimension are formed when two laser beams of the
same frequency propagating in the opposite directions are superposed. In
such a lattice there is a interaction between an induced dipole moment and
electric field of the laser. The oscillating electric field of a laser induces an
oscillating dipole moment in the atom while at the same time interacts with
this dipole moment in order to create trapping potential V (r) for the atoms

V (r) = −d.E(r) ∝ α(ω)|E(r)|2 (2.18)

Here α denotes the polarizability of an atom and I(r) ∝ |E(r)|2 characterizes
the intensity of the laser light field, with E(r) as its electric amplitude at
position r [11]. Assuming that both beam are linearly polarized with the
electric field vector along the z-axis, the resultant field is

Ez = Eocos(qx− ωt) + Eocos(−qx− ωt) = 2Eocos(qx)cos(ωt) (2.19)

Thus the potential is proportional to the square of the time-varying electric
field (averaged over one time period), which is given by

〈

E2
z

〉

t
= 2E2

ocos
2(qx). (2.20)

Thus the potential created is periodic in x, with a period equal to π/q [4].
In terms of the wavelength of laser light λ = 2π/q, the period is λ/2. The
above potential can be written as

Vol(x) = Vocos
2(
πx

d
) (2.21)

where d = π/q = λ/2 is the period and Vo is a constant.
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2.5 Particles within a periodic potential

To have a better understanding of atoms in optical lattices it is important
to review quantum mechanical motion of a particle in a the simple peri-
odic potential. A periodic potential V in one dimension at point x has the
property

V (x) = V (x+ d) (2.22)

denoting its translational property, i.e. the potential value repeats itself after
any number of crystal translation displacements d. In the present case, atoms
are confined in a periodic potential which is created by a standing light wave.
Thus, the lattice potential may be taken to be either

Vol(x) = cos2(
πx

d
) (2.23)

or
Vol(x) = sin2(

πx

d
) (2.24)

where Vol denotes optical lattice potential.

2.5.1 Single particle treatment

Particles in optical lattices follow the same basic physics, as electrons do
in crystal lattices in solids. When a periodic potential is introduced in the
system, it breaks the continuous translational symmetry of the system, and
the wavefunction describing the particle cease to remain the eigenstates of
the momentum operator. For definiteness and simplicity, one-dimensional
system can be taken up which illustrates the phenomenon. Behavior of the
particle in this potential is governed by the Scrödinger equation

[

− h̄2

2m

∂2

∂x2
+ Vol(x)

]

ψ(x) = Eψ(x), (2.25)

where Vol(x) ≡ optical lattice potential seen by the particle, ψ(x) ≡ wave-
function for the particle in the system and E ≡ energy of the particle.

Now in the present system Hamiltonian, H , is invariant under transla-
tion by a lattice spacing d,which is due to the periodic nature of the po-
tential. Mathematically, the eigenfunctions of the Hamiltonian are also the
eigen functions of the discrete translation operator Td (a translation oper-
ator translates the entire system by one lattice spacing). Thus, H and Td

commute with each other
[H, Td] = 0. (2.26)
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Now suppose there are N number of lattice sites, then the application of
periodic boundary condition, ψ(x+Nd) = ψ(x), which implies

TN
d ψ(x) = ψ(x). (2.27)

Therefore the eigenvalues are of the form eι2πn/N , where n is an integer. Thus,

ψ(x+ d) = eι2πn/Nψ(x) = eιkdψ(x), (2.28)

where k = 2πn
Nd

.
From the above discussion it can be seen that the function u(x) = ψ(x)e−ιkx

is periodic in space with the same period as the lattice potential. So the
eigenfunctions of the Schrödinger equation have the form of a plane wave
eιkx modulated by a function having the same periodicity as that of the
lattice or

ψk(x) = uke
ιkx, (2.29)

where uk satisfies the condition uk(x) = uk(x+ d) and k is the wave number
and can be used to label the wavefunctions.

For a given k there are many different states characterized by the band
in which it lies, so in general the stationary state of the wavefunction is
written by putting an additional subscript ν, denoting the band index, to the
wave function. The above treatment goes by the name of Bloch’s theorem
in the context of the electron band theory. The wave functions in three
dimension take the following form

ψk,ν(r) = uk,ν(r)e
ιk.r, (2.30)

where k is the wave vector. The quantity h̄k is referred to as the quasi-
momentum, and so ψk,ν is the quasi-momentum eigenstate of the system.

When the Bloch functions Eq.(3.9) are expanded in the momentum
basis, the only momenta contributing to the sum is then given by

ψk,ν(x) =
∫ dq√

2π
eιqxψk,ν(q) =

j=∞
∑

j=−∞

cj,ν
ei(k+2πj/d)x

√
2π

, (2.31)

where the expansion coefficients are given by

cj,ν =
∫

dx
e−ι(k+2πj/d)x

√
2π

ψk,ν(x). (2.32)
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2.6 Validity of a mean-field approach in pres-

ence of an optical lattice

For the mean-field approach to remain valid for studying the condensate
properties in an optical lattice, the strength of the later must not be too
high to destroy the phase coherence property of the condensate. If the optical
lattice is too deep, it makes the tunneling of the atoms through the optical
barrier difficult and there by disrupting the coherence property in an extreme
limit.

2.7 Ground state properties

The wavefunction ψ(r) used to describe the various ground state properties
of a condensate at zero-temperature is determined by the solution to the
time-independent Gross-Pitaevskii equation, Eqn.(2.11). This section briefly
introduces the GP equation in one- and two-dimensions, and towards the end
its approximate analytical solutions in the limiting cases have been discussed.

2.7.1 One- and two-dimensional condensates

Keeping in mind the discussion of the section (2.2.2) the condensate prop-
erties may be continued to be described under mean-field approach by the
Gross-Pitaevskii equation, with suitable modification in the interaction en-
ergy term. The wavefunction for the one-dimensional condensate given by
the equation (2.15), with radial part of the wavefunction being a harmonic os-
cillator ground state wavefunction. When this equation is substituted in the
Gross-Pitaevskii equation, Eqn.(2.8), and the entire equation is multiplied
by ψ∗(r) and is integrated with respect to r we get

ıh̄
∂Ψ(x, t)

t
= [− h̄2

2m

∂2

∂x2
+ Vext(x) + g1d|Ψ(x, t)|2]Ψ(x, t) (2.33)

with ∫

|Ψ(x, t)|2dx = 1, (2.34)

where g1d is the effective interaction strength in one-dimension. The above
equation is the Gross-Pitaevskii equation for describing the one dimensional
condensate properties. Similarly, the Gross-Pitaevskii equation for the two-
dimensional condensates takes the form
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ıh̄
∂Ψ(x, y, t)

∂t
= [− h̄2

2m
(
∂2

∂x2
+

∂2

∂y2
) + Vext(x, y) + g2d|Ψ(x, y, t)|2]Ψ(x, y, t)

(2.35)
with

∫

|Ψ(x, y, t)|2dxdy = 1, (2.36)

where g2d is the effective interaction strength in two-dimension.

2.7.2 Approximate analytical solutions

In general, this non-linear equation must be solved numerically except in
few limiting cases where it lends an easy analytical solution. These limiting
cases appear when there are either very few or many atoms in the condensate
confined to a limited region of space.

Ideal-gas limit

In the limit of very weak interactions NoUo ≪ h̄ωx,y,z, i.e. No → 1 one
can neglect the interaction term in the Eqn.(2.11). Then the condensate
wavefunction is simply the ground state of the harmonic oscillator, which
gives a density for No of

|ψ(r)|2 = No(ωxωyωz)
1/2(

m

πh̄
)3/2exp(−m

2h̄
(ωxx

2 + ωyy
2 + ωzz

2)). (2.37)

Thomas-Fermi Limit

In the limit of strong interactions NoUo ≫ h̄ωx,y,z, i.e. No → ∞ the determi-
nation of the trapped condensate wavefunction is is simplified by neglecting
the kinetic energy which is now much smaller than the interaction term.
In this limit, known as the Thomas-Fermi limit, the ground state solution
becomes

ψTF (r) =

√

1

NoUo
[µTF − Vext(r)]. (2.38)

When the condensate is confined using an isotropic harmonic trap, Vext(r =
1
2
mωr2), Eqn.(2.38) takes the form

ψTF (r) =

√

1

NoUo

[µTF − 1

2
mωr2]. (2.39)
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The Thomas-Fermi radius is determined by solving for r in the expression
V (r) = µTF , which gives

rTF =

√

2µTF

mω
. (2.40)

The chemical potential for the system in such a situation can be determined
from the normalization condition

4π
∫ rTF

0
r2dr|ψTF |2 = 1. (2.41)

This gives the chemical potential in the Thomas-Fermi limit as

µTF =
h̄ω

2
[15No(

a

lsho
)]2/5 (2.42)

where lsho is the size of the harmonic oscillator ground state. The conden-
sate in this limit can be thought of as “filling in” the bottom of the trapping
potential up to a “height” of the chemical potential µTF . Thus, the size of
the condensate in the Thomas-Fermi limit is given by

rTF = lsho(
15Noa

lsho

)1/5. (2.43)

The Thomas-Fermi approximation becomes increasingly accurate as the
number of atoms in the condensate increases and the mean-field energy of
the condensate dominates the kinetic energy.

2.8 Numerical techniques

This section deals with the computational techniques which were used during
course of study. This includes the numerical methods which were used to
solve the Gross-Pitaevskii equation, both in one- and two-dimensions, to
obtain the ground state solution. The algorithms were implemented in the
FORTRAN-95 and the data so obtained was plotted in the MATLAB. The
Gross-Pitaevskii equation is non-linear Schrödinger equation, a non-linear
partial differential equation. There are no exact analytical solution of this
equation except under few special cases (e.g. Thomas-Fermi limit). The
ground state solution of the equations (2.33) and (2.35) were obtained using
a technique called imaginary time propagation.
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2.8.1 Dimensionless formalism

An appropriate choice of dimensionless quantities minimizes the number of
adjustable parameters to few in the numerical simulation of a problem in
hand. Also, it scales the various physical quantities involved, in units of
those which are the characteristics of the system so that one does have to
deal with very large or small numbers unnecessarily. The Eqn.(2.8) may
be transformed into a dimensionless form using the following transformed
variables

t̃ = ωot, r̃ = r/lsho, Ψ̃(r̃, t) = l
3/2
shoΨ(r, t) where ωo = min(ωx, ωy, ωz) and

lsho =
√

h̄/mωo is the length of the harmonic oscillator ground state. Thus,

length and time are in units of lsho and ω−1
o . The dimensionless GP equation

in three-dimension takes the form, after doing away with˜

ı
∂Ψ(r, t)

∂t
= [−1

2
∇2 + Vext(r) + g|Ψ(r, t)|2]Ψ(r, t), (2.44)

where Vext(r) = 1
2
(γxx

2 + γyy
2 + γzz

2), γx = ωx

ωo
, γy = ωy

ωo
, γz = ωz

ωo
, and

g = 4πNo/lsho.

1D GP equation

The dimensionless Gross-Pitaevskii equation for the one-dimensional Bose-
Einstein condensate may be written as

ı
∂Ψ(x, t)

∂t
=

[

−1

2

∂2

∂x2
+

1

2
x2 + g1d|Ψ(x, t)|2

]

Ψ(x, t), (2.45)

where g1d is the effective interaction strength in one-dimension. The energy
functional, in the dimensionless form, to be used for calculating the ground
state energy is given by

E(ψ) =
∫
[

1

2
|∇|2 + Vext(x) +

1

2
g1d|ψ|4

]

dx. (2.46)

2D GP equation

Similarly, the dimensionless form of GP equation for the two-dimensional
condensate is

ı
∂Ψ(x, y, t)

∂t
=

[

−1

2
(
∂2

∂x2
+

∂2

∂y2
) + Vext(x, y) + g2d|Ψ(x, y, t)|2

]

Ψ(x, y, t),

(2.47)
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where Vext(x, y) = 1
2
(x2 +γyy

2) with ωo = ωx and g2d is the effective coupling
constant for the two dimensional condensate [10]. The corresponding energy
functional in the dimensionless for the two-dimension condensate is given by

E(ψ) =
∫
[

1

2
|∇ψ|2 +

1

2
(x2 + γyy

2) + g2d|ψ|4
]

dxdy. (2.48)

2.8.2 Imaginary time propagation (ITP) algorithm

One method which is both reliable and easily-implemented for computing the
ground state solution of the GP equation is the imaginary time propagation
(ITP) algorithm [9]. To see how this works, consider the wavefunction as a
superposition of eigenstates φi(r) with time-dependent amplitudes ci(t) and
eigen energies Ei(t), i.e.

Ψ(r, t) =
∑

i

ci(t)φi(r). (2.49)

Now when one sets t → −ıτ in the unitary evolution operator so that the
solution in imaginary time is given by

Ψ(r, τ) = e−τH/h̄Ψ(r, 0). (2.50)

The above equation can be rewritten as

Ψ(r, τ) = e−τH/h̄
∑

i

ci(0)φi(r). (2.51)

The above time evolution shows that different eigenstates in the expansion
decay exponentially at different rates depending upon their eigen energies.
The important fact here is that the lowest energy state i.e. the ground state
has the smallest decay constant, and it decays away the slowest.

The initial guess Ψ(r, 0) for the ground state will contain some finite
contribution from the excited states in the expansion. This contribution from
the excited states in the initial guess will decay away faster than the ground
state part of the expansion. After a sufficiently long time interval To, the
solution is then

Ψ(r, To) ≈ coe
−ToEo/h̄φo(r). (2.52)

Also, while implementing the procedure the wave function must be re-normalized
periodically in time due to decaying norm of the solution. Specially when
solving the non-linear GP equation one must re-normalize the wave function
at each step, since the Hamiltonian depends on the density |Ψ(r, t)|2 of the
solution.
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2.8.3 Discretisation of the condensate wavefunction

To numerically determine the ground state solution of the Gross-Pitaevskii
equation it is necessary to discretize the condensate wavefunction. This has
been done on an equi-spaced position basis. The wavefunction Ψ(r, t) is
represented in one dimension by Ψi corresponding to position (xi), and in
two-dimensions by Ψi,j on positions (xi, yj). A similar discretization has been
performed in the time domain too, at time t the wavefunction is denoted by
Ψk. The difference in the position between two grid points has been denoted
by ∆x, ∆y along x- and y-directions respectively. The size of time step is
represented by ∆t in the discretized equations. Thus, the dimensionless GP
equation, after incorporating ITP algorithm and using Euler discretization
scheme, in one dimension may be written as

− [Ψk+1
i − Ψk

i ]

∆t
= −1

2

(

Ψk
i+1 − 2Ψk

i + Ψk
i−1

(∆x)2

)

+
1

2
x2

i Ψ
k
i + g1d|Ψk

i |2Ψk
i . (2.53)

Similarly, the dimensionless GP equation, after incorporating ITP algo-
rithm, in two-dimensions may be written as

− [Ψk+1
i,j − Ψk

i,j]

∆t
= −1

2

(

Ψk
i+1,j − 2Ψk

i,j + Ψk
i−1,j

(∆x)2

)

− 1

2

(

Ψk
i,j+1 − 2Ψk

i,j + Ψk
i,j−1

(∆y)2

)

+
1

2

(

x2
i + y2

j

)

Ψk
i,j + g2d|Ψk

i,j|2Ψk
i,j. (2.54)



Chapter 3

BEC in a rotating optical
lattice

The main aim of this study is to understand the behavior of the Bose-Einstein
condensates in a rotating optical lattice. The case of trapped rotating inter-
acting condensate has been a subject of great research, and the new variation
to this problem is inclusion of the optical lattice potential. An optical lattice
is a very versatile tool which offers us an opportunity to manipulate our con-
densate in a variety of ways. One such scheme is the creation of a rotating
optical lattice along with the condensate confinement. This unique feature
of it, along with many others as mentioned in the introduction, makes the
experimental study of the response of the condensate very versatile and in-
teresting. Various groups have already carried out such experiments, among
them are Tung et al., at JILA [15] and Williams et al. [16], at University of
Oxford, to name a few. The Oxford group has devised the following interest-
ing scheme to generate a rotating optical lattice. Two parallel beams were
allowed to be incident on a lens and these formed a 1D optical lattice in the
focal plane of the lens where they intersect. The cylindrical symmetry of such
an arrangement allowed them to achieve a rotating lattice upon rotation of
the parallel beams incident on a lens. And finally two orthogonal 1D lattices
were combined to form a 2D rotating lattice as shown in the figure (3).

3.1 Simple rotation of a trapped condensate

Before taking up the issue of condensates in a rotating optical lattice, it is
worth while to recall the response of a trapped condensate to rotation in the
absence of former. Being a complex number the condensate wavefunction
may be written as Ψ(r) = |Ψ(r)|e−ıφ(r), and the superfluid velocity can be

19
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Figure 3.1: Two orthogonal standing wave intensity patterns in the focal
plane of a lens combine to form a 2D lattice. The axial symmetry of the
system allows rotation of the lattice to be realized.

then inferred from the particle current density

j =
h̄

2mı
(Ψ∗∇Ψ − Ψ∇Ψ∗) = |Ψ|2 h̄

m
∇φ. (3.1)

Since, j = nv the velocity in terms of the condensate phase is

v =
h̄

m
∇Φ(r). (3.2)

Thus, it can be seen that v is irrotational, ∇×v = 0, everywhere except at the
points where phase φ(r) has a singularity. Furthermore, as a consequence of
single-valuedness of the wavefunction, the change in phase around any closed
path turns out to be an integer multiple of 2π,

∮

s
dl.v(r) =

∮

S

h̄

m
∇φ.dl = 2πq

h̄

m
, (3.3)

i.e. circulation in BEC is quantized in units of 2πh̄/m. In order to cancel
the effect of diverging velocity, the condensate density must vanish at singu-
larity. The vanishing structure is referred to as a vortex. So, the condensate
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responds to rotation by forming vortices in the density profile at the phase
singularities and remains irrotational in the remaining region.

3.2 Single particle in a periodic potential in

a rotating frame

Study of a single particle in a rotating optical lattice may be prove to be help-
ful in understanding the basic physics involved in the condensate’s response
to the same. So, in this section too as in section (2.5), first, a study has
been done in the context of a single particle starting from the hamiltonian
which describes the system in the rotated frame of reference. Thereafter,
the concept of quasi-angular momentum, which emerges in the treatment of
rotating N-site sinusoidal ring lattice, has been discussed.

3.2.1 Moving lattice

Instead of considering the effect of rotation of an optical lattice first, it would
be interesting to observe the effect of linear motion. Suppose the lattice is
moving at a uniform velocity v with respect to a stationary frame, then the
Hamiltonian in the frame attached to the lattice is given by

H = Ho − p.v, (3.4)

where Ho is the Hamiltonian in the stationary frame. Considering an eigen-
function ψk(x) of Ho and assuming p.v to be small, the application of first-
order perturbation theory gives

Ek =
∫

dxψ∗
k(Ho − p.v)ψk = Eo

k − v
∫

dxψ∗
k′(p)ψk, (3.5)

which is the expression for the ground state energy under the new situation.
So if the quantity

∫

dxψ∗
k′(p)ψk, average momentum, is positive then a trans-

lating lattice has a lower ground state energy as compared to the stationary
lattice.

3.2.2 Hamiltonian

The Hamiltonian for a single particle in a stationary optical lattice is given
by

Ho = − h̄2

2m
∇2 + Vol(x, y). (3.6)



CHAPTER 3. BEC IN A ROTATING OPTICAL LATTICE 22

When rotation is considered, the time dependence in rotating potentials can
be avoided by making a coordiante transformation to a coordiante system ro-
tating with the same angular velocity as the potential. Now the Hamiltonian
is expressed using rotating frame coodinates [13, 14]. Consider the particle
to be rotating about the z-axis with an angular velocity, ω in the stationary
frame.

The position vector of the particle is r(≡ ro) and the velocity is vo =
ω × r, thus the angular momentum in the stationary frame is

Lo = m(r × vo) = r × po (3.7)

The Lagrangian in the stationary frame is

Lo =
1

2
mv2

o = Ho, (3.8)

where Ho is the Hamiltonian for the system in the stationary coordinate
system.

Now the velocity of the particle in a frame which is rotating with an
angular velocity Ω with respect to stationary frame is given by

v = vo − Ω × r. (3.9)

Thus, the Lagrangian in the rotating frame coordinates can be written as

L = Lo =
1

2
mv2

o =
1

2
m(v + Ω × r)2

=
1

2
mv2 +mv.(Ω × r) +

1

2
m(Ω × r)2. (3.10)

The conjugate momenta can be obtained as

dL = mv.dv +m(Ω × r).dv +mv.(Ω × dr) +m(Ω × dr).(Ω × r), (3.11)

p =
∂L
∂v

= mv +m(Ω × r) = mvo = po. (3.12)

L = r × p = r × po. (3.13)

The Hamiltonian in the rotating frame is then given by
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H = p.v −L = mv2 +mv.(Ω × r) − 1

2
mv2 −mv.(Ω × r) − 1

2
m(Ω × r)2

=
1

2
mv2 − 1

2
m(Ω × r)2

=
1

2
m(vo − Ω × r)2 − 1

2
m(Ω × r)

=
1

2
mv2

o − Ω.(r × po)

=
p2

o

2m
−mΩ.L

= Ho − Ω.L. (3.14)

3.2.3 Quasi-angular momentum

In the present section an attempt has been made to understand and present
the consequences of having such a hamiltonian, Eqn. (3.14), for the system
following the work done by Rajiv Bhat et al.[12].

A moving N-site linear optical lattice with periodic boundary conditions
is equivalent to a rotating, N-site ring lattice. This analogy can be made
explicit by considering the Hamiltonian for the particle in a moving, one
dimensional, sinusoidal N-site lattice. The hamiltonian in the co-moving
frame, Eqn. (3.4) is given by

H = − h̄2

2m

∂2

∂x2
+ Vocos

2(qx) − vh̄

ι

∂

∂x
(3.15)

where v is the velocity of the lattice and q = π/d. Under periodic boundary
conditions

ψ(x+Nd) = ψ(x). (3.16)

Where as, the Hamiltonian of a rotating sinusoidal N-site ring lattice in the
rotating frame is given by

H = − h̄2

2m

1

R2

∂2

∂φ2
+ Vocos

2(Nφ/2) − Ω
h̄

ι

∂

∂φ
, (3.17)

where Ω is the rotation frequency, R is the radius of the ring, and −ιh̄ ∂
∂φ

is

the angular momentum operator, Lz. The two hamiltonians, Eq.(3.15)and
Eq.(3.17), are identical if one considers the transformation x = φNd/2π and
identifies Nd/2π with R and v/R with Ω.
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The fact that the above Hamiltonians are exactly identical, ensures that
all the properties of one-dimensional systems with a discrete translational
invariance are inherited to the ring systems with a discrete rotational invari-
ance. Thus if,

ψj(ρ, φ) = eιjφRj(ρ) (3.18)

where Rj(ρ) is a radial function and j is an integer, are two-dimensional free
space solutions in polar coordinates. Then analogous to the linear lattice,
in the ring system in the presence of a potential that breaks the rotational
symmetry, the eigenstates of the Hamiltonian, Eq.(3.17), are linear combi-
nations of the above free space solutions, Eq.(3.18). For the potential with
a discrete N-fold rotational symmetry, the eigenstates can be written as

ψm(φ, ρ) =
∞
∑

j=−∞

aje
ι(Nj+m)φRj(ρ). (3.19)

Thus ψm is an eigenstate with eigenvalue e−ι2πm/N of the discrete rotational
operator R2π/N that rotates the system by an angle 2π/N ; and plays a role
analogous to the discrete translational operator, Td. The analogy is complete
when it is noted that the eigenstates are linear combination of the angular
momentum eigenstaes, in which case the number h̄m is referred as the quasi-
angular momentum of the state, ψm(ρ, φ).

3.2.4 A toy model - Vortex formation in a box

Consider a single particle in a 2× 2 lattice bounded by a box rotating about
its center. The single-particle Hamiltonian for the system in the rotating
frame is,

H = − h̄2

2m

(

∂2

∂x2
+

∂2

∂y2

)

+ Vbox(x, y) + ıh̄Ω(x
∂

∂y
− y

∂

∂x
), (3.20)

where Vbox is the potential corresponding to the box with very high potential
walls, and Ω is the frequency with which box is rotating. The Scrödinger
equation describing the above system follows from the Eqn.(3.20), and is

ıh̄
∂Ψ

∂t
=

[

− h̄2

2m

(

∂2

∂x2
+

∂2

∂y2

)

+ ıh̄Ω(x
∂

∂y
− y

∂

∂x
)

]

Ψ (3.21)

The ground state of the above equation (3.21) may be obtained using ITP
algorithm, discussed in section (2.8.2). The dimensionless form is obtained
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by dividing the entire equation by ER = π2h̄2/2m(L/2)2, where L is the
length of the box,

ı
∂Ψ

∂t
=

[

−
(

∂2

∂x2
+

∂2

∂y2

)

+ ı2πα(x
∂

∂y
− y

∂

∂x
)

]

Ψ, (3.22)

with t → t
mL2/2h̄

, x → x
L/2

, y → y
L/2

, and Ω → 4πh̄α
mL2 . The initial guess

solution for the ITP algorithm may taken to be based on the ground state
solution of the non-rotating box potential,

ψ(x, y) = cos(
πx

2
+ b) cos(

πy

2
+ b), (3.23)

where b is a parameter which represents the deviation.

3.3 Two-dimensional rotating optical lattice

In this section, the study of the ground state properties of Bose-Einstein
condensate in a two-dimensional rotating optical lattice has been taken up.
The condensate still can be described under the mean-field approximation,
the GP equation, provided the optical lattice strength is not too strong. The
treatment also assumes that, initially the condensate is in the ground state
and is confined by a harmonic potential, and then a rotating optical lattice
potential is switched on. Then, the Gross-Pitaevskii equation describing the
above system is

ıh̄
∂Ψ(x, y, t)

∂t
= [− h̄2

2m

(

∂2

∂x2
+

∂2

∂y2

)

+ Vext(x, y) + Vol(x, y) − ΩLz

+ g2d|Ψ(x, y, t)|2]Ψ(x, y, t), (3.24)

where Vext(x, y) = 1
2
mω2(x2 + y2), Vol is the optical lattice strength, Ω is

the optical lattice rotation frequency, Lz is the z-component of the angular
momentum, andm, ω are the mass of the condensate atoms and the harmonic
trap frequency respectively. The energy in the rotating frame is given by the
expression

E = Eo − Ω.L, (3.25)

where Eo is the energy in the stationary frame.

Since, an analytical solution of this equation is not possible, so the ground
state solution has been computed numerically by employing the ITP algo-
rithm. The discussion for the numerical computation can be simplified by
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adopting a energy scale, h̄ω, which is the kinetic energy corresponding to
the length scale lsho (length of the ground state wavefunction in a harmonic
oscillator potential). The dimensionless form of the Eqn.(3.24) is,

ı
∂Ψ(x, y, t)

∂t
= [−1

2

(

∂2

∂x2
+

∂2

∂y2

)

+
1

2
(x2 + y2) + vol(sin

2(
πx

d
) + sin2(

πy

d
))

− ıα(x
∂

∂y
− y

∂

∂x
) + g|Ψ(x, y, t)|2]Ψ(x, y, t), (3.26)

where the units for length, time, and energy are
√

h̄/mω, ω−1, and h̄ω re-
spectively. vol is optical lattice energy in terms of harmonic trap energy, i.e.
vol = Vol/h̄ω, α is the rotation frequency of the lattice in units of the har-
monic trap frequency (α = Ω/ω), d is the lattice constant in terms of lsho,
and g is the dimensionless parameter characterizing the interaction strength
of the condensate atoms in two-dimensions. The dimensionless form for the
energy expression following Eqn.(3.25) is

E = Eo − αRe[ψ∗Lzψ], (3.27)

where Eo is the energy in the stationary frame in units of h̄ω.



Chapter 4

Results

Results

In this chapter, the results of all the numerical simulations and the important
plots pertaining to the problem under study have been presented. The results
have been presented in the order of complexity of the numerical scheme
for the solutions to tackle the problems, which was followed to achieve the
final aim of the study, i.e. the ground state properties of a Bose-Einstein
condensate confined in a rotating optical lattice.

4.1 One-dimensional Bose-Einstein condensa-

tion

The numerical study of a one-dimensional problem is relatively easier and
it requires a less computational time as compared to their two-and three-
dimensional analogues. So, the one-dimensional Bose-Einstein condensation
was taken up first and its ground state properties were studied under har-
monic and optical lattice potential confinement.

4.1.1 Harmonic confinement

The details on it have been given in the section (2.2.1), and section (2.7.1).
The ground state solution of the GP equation, Eq.(2.45), and its comparison
with Thomas-fermi solution is being presented here.

The initial guess in the ITP algorithm to obtain the ground state solution
of Eq.(2.45) has been taken to be the ground state of the harmonic oscillator

27
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Figure 4.1:

in the absence of non-linear interactions,

ψ(x) ∝ exp(−mωx
2

2h̄
). (4.1)

In figure 4.1(a), the probability density profiles have been plotted for the dif-
ferent values of the effective interaction strength, g, as the value of g increases
the peaks descend and the condensate length along the x-axis increases. The
increased inter-particle repulsive interactions causes the condensate to spread
along the x-direction. Also, shown in the plot is the solution in the ideal gas
limit when the gas is so dilute that the interactions between the atoms have
been neglected.

Figure 4.1(b), shows the comparison of the density profile for g = 12.0 with
the Thomas-Fermi approximation. A comparative study of the two curves
reveals that the Thomas-Fermi solution is a very good representation of the
wavefunction in the center of the trap, but it fails to remain so at the edges
of the condensate, where the density is so low that the kinetic energy term
in the GP equation can not be neglected.
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Figure 4.2:

The figure 4.2, shows the energy curves obtained for the different values
of the one-dimensional effective interaction strength as a function of imag-
inary time. The curves show a perfect convergence after a large number of
imaginary time steps, which is in accord with the imaginary time propaga-
tion algorithm, section (2.8.2). The convergence of the curves shows that the
ground state has been reached.
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4.1.2 Optical lattice

After studying the condensate properties in a harmonic confinement an op-
tical lattice potential was superposed on it.

Variation of the effective interaction strength
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Figure 4.3:

The figure (4.3), shows the plots of density profile for different values
of the one-dimensional interaction strength at a constant value of optical
lattice potential, vol = 1.4ER. vol has been expressed in terms of the re-
coil energy ER = h̄2π2

2md2 , where d is the dimensionless lattice constant. As
in the case of one-dimensional condensate without any optical lattice here
too the condensate spreads along the x-axis due to the repulsive interaction
between the condensate atoms with increasing value of the effective interac-
tion strength. Also, the periodicity of the lattice is getting reflected in the
condensate density profile, which is showing a periodic increase and decrease
in the probability density.
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Comparison with Thomas-Fermi approximation
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Figure 4.4:

Here, in figure (4.4), a comparative plot of the density profile for g = 12.0
with Thomas-Fermi solution has been given. The behavior is as expected,
near the edges the exact numerical solution deviates from the Thomas-Fermi
approximation.
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Variation of optical lattice potential strength
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Figure 4.5:

The figure (4.5), shows the density profiles obtained for the differen values
of the optical lattice potential. As the potential strength is increased the
condensate gets more and more localized at the potential minimas in the
optical lattice, which can be approximated to small harmonic traps placed
periodically along the length of the lattice.
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4.2 Vortex formation in a rotating box

In this section the results following the discussion in the section (3.2.4) on the
vortex formation in a rotating box have been presented. Again, the ground
state solution has been computed following the ITP algorithm.
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Figure 4.6:

Initially for the rotation there is no vortex formation in the density profile,
but as the rotational frequency is increased, at around α = 1.19 a depletion
in the density profile occurs at the center. A phase plot for the vortex state as
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Figure 4.7:

in figure 4.7(b) shows a change of phase of 2π in one complte rotation around
the hole at the center in the density profile, which signals the presence of a
vortex.
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Figure 4.8:

The figure (4.8) shows the percentage deviation of the ITP solution from
its analytical counter part when the box is not rotating. The observed max-
imum percentage deviation was found to be 0.25 percent, which is quite
acceptable.
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4.3 Two-dimensional Bose-Einstein conden-

sation

At the next level of complexity is the solution of the Gross-Pitaevskii equation
in two-dimensions. In the present section, first of all the ground state solution
of the GP equation for the harmonic confinement and the optical lattice
confinement is given.

4.3.1 Harmonic confinement

Once again, as in the case of a 1D condensate following the discussions of
the sections (2.2.1), and (2.7.1) the ground state solution of the GP equation
describing a two-dimensional condensate has been computed using the ITP
algorithm, section (2.8.2).

(a) The ideal gas limit

Figure 4.9:
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(a) Density profile for g=100.0

Figure 4.10:

The figure 4.9(a) shows the density profile of the condensate in the ideal
gas limit, section (2.7.2). In an extremely dilute condensate the interaction
between the condensate atoms may be neglected, and this yields a density
profile for the condensate similar to the one obtained for a single particle in
2D harmonic oscillator potential.

Figure 4.10(a) shows that when the effective interaction strength is
increased the condensate peak descends and the repulsive interactions among
the condensate causes it to increase in length radially (in the x-y plane).
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4.3.2 Stationary optical lattice

Here, the ground state solution of the GP equation describing the two-
dimension condensate in a stationary optical lattice potential has been pre-
sented. The figure 4.11 (a) to (f), shows the effect of slowly increasing the
optical potential strength. Each plot shows the projection of the density
profile on the x-y plane. With the increase in the optical lattice potential
strength the condensate density profile shows peaks at sites of lower poten-
tial felt by the condensate atoms, a effect which becomes more apparent with
increase in the strength of the former. Thus, the condensate density profile
mimics the oscillatory pattern of the imposed optical lattice in the harmonic
trap.
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Figure 4.11: Density profiles (projection on the x-y plane )
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Figure 4.12: projection on the x-y plane

Figure (4.12) shows the phase distribution for the two-dimensional con-
densate in a stationary optical lattice for two different values of vol = 4.0 and
vol = 6.0. These plots indicate that the phase is uniform through out and
there is no singularity at any point in the phase.
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4.4 Rotating optical lattice

In this section finally the case of rotating optical lattice has been considered.
The discussion of the section (3.3) requires the solution of the GP equation
describing a two-dimensional condensate present in a ground state confined
in a harmonic trap when a rotating optical lattice potential is switched on.
Here too, the ground state solution has been obtained numerically using the
ITP algorithm. Since, a rotating optical lattice combines the effect of both
the rotation and the optical lattice, so a two stage study was done. First
the lattice potential was kept constant and the rotational frequency of the
lattice was varied in small steps and the resulting were analyzed. Secondly,
the rotational frequency was kept constant and the optical lattice potential
strength was varied to study the effects it produces on the ground state
properties of the condensate.
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4.4.1 Variation of rotation frequency

The ground state solutions obtained, have been presented in the figure 4.13
(a) to (d). A comparative study of the probability density plots shows that
with the increase in the rotation frequency the condensate atoms redistribute
themselves on the x-y plane, covering many more maximas and minimas of
the optical lattice, under the combined effect of the repulsive interactions
between the condensate atoms and the centrifugal force due the rotational
motion. The central region has the highest probability density since there
both the harmonic trap and the optical lattice minima coincided, at least for
the rotation frequencies investigated.
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Figure 4.13: Probability density profiles (projection on the x-y plane)
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Figure 4.14: Phase distributions

A comparative study of the phase plots, figure 4.14 (a) to (d), for the
increasing values of the rotation frequency at a constat value of vol = 6.0
shows that the number of vortices in the condensate increases with it. The
presence of a vortex may be detected by observing the phase change, indi-
cated by the color change from blue (−π) to red (π) in a given region of the
plot, of 2π signalling a vortex.



CHAPTER 4. RESULTS 43

4.4.2 Variation of the optical lattice potential strength

A study of the plots from (a) to (d) in the figure (4.15), at constant value of
α = 0.7 shows that with the increasing value of the optical lattice strength,
the condensate atoms redistribute themselves over a large area of the optical
lattice. When seen along the x-(or y) axis at a constant y (or x) the con-
densate density profile shows an oscillatory behavior, reflecting effects of the
periodic behavior of the optical lattice on the condensate. The optical lattice
potential minimas can be approximated to small potential wells periodically
arranged over the entire horizontal plane.
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Figure 4.15: Density profiles, (projection on the x-y plane)



CHAPTER 4. RESULTS 44

x−axis [in units of l
sho

]

y−
ax

is
 [i

n 
un

its
 o

f l
sh

o]

α=0.7, v
ol

=2.0

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6 −3

−2

−1

0

1

2

3

(a)

x−axis [in units of l
sho

]

y−
ax

is
 [i

n 
un

its
 o

f l
sh

o]

α=0.7, v
ol

=4.0

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6 −3

−2

−1

0

1

2

3

(b)

x−axis [in unit of l
sho

]

y−
ax

is
 [i

n 
un

it 
of

 l sh
o]

α=0.7, v
ol

=6.0

−5 0 5

−5

−4

−3

−2

−1

0

1

2

3

4

5

−3

−2

−1

0

1

2

3

(c)

x−axis [in unit of l
sho

]

y−
ax

is
 [i

n 
un

it 
of

 l sh
o]

α=0.7, v
ol

=8.0

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6 −3

−2

−1

0

1

2

3

(d)

Figure 4.16: Phase distribution

As can be inferred from the phase plots (a) to (d) in the figure (4.16) for
an increasing values of the optical lattice potential strength at a constant
rotation frequency of α = 0.7 the number of vortices in the condensate in-
creases. This means that optical lattice potential is helping in the formation
of vortices.

Another study which possibly could have been done, was to observe
for each optical lattice potential strength the rotation frequency at which
vortex is nucleated into the system and then this could be compared to the
values of rotation frequency without the optical lattice at which the vortex
is nucleated into the system. This would have had made the role of the
optical lattice potential clearer on the vortex nucleation in the system. But,
unfortunately, the computational time for the each case is very large so such
an analysis could not be done.



Chapter 5

Conclusions

The present study has been done to explore the properties of a Bose-Einstein
condensate confined in a rotating optical lattice. The entire study has been
carried out under the mean-field approximation for a dilute weakly interact-
ing Bose-Einstein condensate atoms. In this regime, the ground state prop-
erties were investigated using the Gross-Pitaevskii equation, and the inter-
actions between condensate atoms gave rise to a non-linearity in the system
which tilted the balance in the favor of numerical methods over the analytical
ones (which are not possible except under few special circumstances).

While working on the problem an approach of dividing the complex
ones into the smaller and simpler parts was adopted. So to begin with,
the ground state properties of a one-dimensional Bose-Einstein condensate
were studied in the harmonic and optical lattice confinement to observe the
role of interactions and what extra effect an optical lattice might introduce.
After studying the one-dimensional condensate in detail, the case of a two-
dimensional condensate was taken up. Here too, the role of interactions and
the two-dimensional optical lattice were looked for. Finally, the case of a
rotating optical lattice was considered. The study of the ground state prop-
erties has revealed that an optical lattice confinement assists in the vortex
formation in the condensate, apart from introducing its periodic character in
the condensate density profile.

The study could have been extended further to explore the band-
structure properties for the condensate in a rotating optical lattice, and also
to study the effects non-linearity introduces in the system. But to do so a
heavy computational work is required which has limited the scope of exten-
sion of the present work in this direction.
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